In probability theory, Girsanov's theorem or the Cameron-Martin-Girsanov theorem explains how stochastic processes change under changes in measure. The theorem is especially important in the theory of financial mathematics as it explains how to convert from the physical measure, which describes the probability that an underlying instrument (such as a share price or interest rate) will take a particular value or values, to the risk-neutral measure which is a very useful tool for evaluating the value of derivatives on the underlying.
Results of this type were first proved by Cameron-Martin in the 1940s and by Igor Girsanov in 1960. They have been subsequently extended to more general classes of process culminating in the general form of Lenglart (1977).
Girsanov's theorem is important in the general theory of stochastic processes since it enables the key result that if Q is a measure that is absolutely continuous with respect to P then every P-semimartingale is a Q-semimartingale.
We state the theorem first for the special case when the underlying stochastic process is a Wiener process. This special case is sufficient for risk-neutral pricing in the Black–Scholes model.
Let be a Wiener process on the Wiener probability space . Let be a measurable process adapted to the natural filtration of the Wiener process ; we assume that the usual conditions have been satisfied.
Given an adapted process define
where is the stochastic exponential of X with respect to W, i.e.
and denotes the quadratic variation of the process X.
If is a martingale then a probability measure Q can be defined on such that Radon–Nikodym derivative
Then for each t the measure Q restricted to the unaugmented sigma fields is equivalent to P restricted to
Furthermore, if is a local martingale under P then the process
is a Q local martingale on the filtered probability space .
If X is a continuous process and W is a Brownian motion under measure P then
is a Brownian motion under Q.
The fact that is continuous is trivial; by Girsanov's theorem it is a Q local martingale, and by computing
it follows by Levy's characterization of Brownian motion that this is a Q Brownian motion.
In many common applications, the process X is defined by
For X of this form then a necessary and sufficient condition for to be a martingale is Novikov's condition which requires that
The stochastic exponential is the process Z which solves the stochastic differential equation
The measure Q constructed above is not equivalent to P on as this would only be the case if the Radon–Nikodym derivative were a uniformly integrable martingale, which the exponential martingale described above is not. On the other hand, as long as Novikov's condition is satisfied the measures are equivalent on .
Additionally, then combining this above observation in this case, we see that the process
for is a Q Brownian motion. This was Igor Girsanov's original formulation of the above theorem.
This theorem can be used to show in the Black–Scholes model the unique risk-neutral measure, i.e. the measure in which the fair value of a derivative is the discounted expected value, Q, is specified by
Another application of this theorem, also given in the original paper of Igor Girsanov, is for stochastic differential equations. Specifically, let us consider the equation
where denotes a Brownian motion. Here and are fixed deterministic functions. We assume that this equation has a unique strong solution on . In this case Girsanov's theorem may be used to compute functionals of directly in terms a related functional for Brownian motion. More specifically, we have for any bounded functional on continuous functions that
This follows by applying Girsanov's theorem, and the above observation, to the martingale process
In particular, with the notation above, the process
is a Q Brownian motion. Rewriting this in differential form as
we see that the law of under Q solves the equation defining , as is a Q Brownian motion. In particular, we see that the right-hand side may be written as , where Q is the measure taken with respect to the process Y, so the result now is just the statement of Girsanov's theorem.
A more general form of this application is that if both
admit unique strong solutions on , then for any bounded functional on , we have that
Brownian motion is the random motion of particles suspended in a medium.
In mathematics, the Wiener process is a real-valued continuous-time stochastic process discovered by Norbert Wiener. It is one of the best known Lévy processes. It occurs frequently in pure and applied mathematics, economics, quantitative finance, evolutionary biology, and physics.
In statistical mechanics and information theory, the Fokker–Planck equation is a partial differential equation that describes the time evolution of the probability density function of the velocity of a particle under the influence of drag forces and random forces, as in Brownian motion. The equation can be generalized to other observables as well. The Fokker–Planck equation has multiple applications in information theory, graph theory, data science, finance, economics etc.
A geometric Brownian motion (GBM) (also known as exponential Brownian motion) is a continuous-time stochastic process in which the logarithm of the randomly varying quantity follows a Brownian motion (also called a Wiener process) with drift. It is an important example of stochastic processes satisfying a stochastic differential equation (SDE); in particular, it is used in mathematical finance to model stock prices in the Black–Scholes model.
In mathematical finance, a risk-neutral measure is a probability measure such that each share price is exactly equal to the discounted expectation of the share price under this measure. This is heavily used in the pricing of financial derivatives due to the fundamental theorem of asset pricing, which implies that in a complete market, a derivative's price is the discounted expected value of the future payoff under the unique risk-neutral measure. Such a measure exists if and only if the market is arbitrage-free.
The Feynman–Kac formula, named after Richard Feynman and Mark Kac, establishes a link between parabolic partial differential equations and stochastic processes. In 1947, when Kac and Feynman were both faculty members at Cornell University, Kac attended a presentation of Feynman's and remarked that the two of them were working on the same thing from different directions. The Feynman–Kac formula resulted, which proves rigorously the real-valued case of Feynman's path integrals. The complex case, which occurs when a particle's spin is included, is still an open question.
A stochastic differential equation (SDE) is a differential equation in which one or more of the terms is a stochastic process, resulting in a solution which is also a stochastic process. SDEs have many applications throughout pure mathematics and are used to model various behaviours of stochastic models such as stock prices, random growth models or physical systems that are subjected to thermal fluctuations.
Itô calculus, named after Kiyosi Itô, extends the methods of calculus to stochastic processes such as Brownian motion. It has important applications in mathematical finance and stochastic differential equations.
In probability theory, the martingale representation theorem states that a random variable that is measurable with respect to the filtration generated by a Brownian motion can be written in terms of an Itô integral with respect to this Brownian motion.
In mathematics, a π-system on a set is a collection of certain subsets of such that
Martingale pricing is a pricing approach based on the notions of martingale and risk neutrality. The martingale pricing approach is a cornerstone of modern quantitative finance and can be applied to a variety of derivatives contracts, e.g. options, futures, interest rate derivatives, credit derivatives, etc.
In mathematics, Doob's martingale inequality, also known as Kolmogorov’s submartingale inequality is a result in the study of stochastic processes. It gives a bound on the probability that a submartingale exceeds any given value over a given interval of time. As the name suggests, the result is usually given in the case that the process is a martingale, but the result is also valid for submartingales.
In probability theory, Novikov's condition is the sufficient condition for a stochastic process which takes the form of the Radon–Nikodym derivative in Girsanov's theorem to be a martingale. If satisfied together with other conditions, Girsanov's theorem may be applied to a Brownian motion stochastic process to change from the original measure to the new measure defined by the Radon–Nikodym derivative.
In probability theory, a real valued stochastic process X is called a semimartingale if it can be decomposed as the sum of a local martingale and a càdlàg adapted finite-variation process. Semimartingales are "good integrators", forming the largest class of processes with respect to which the Itô integral and the Stratonovich integral can be defined.
An -superprocess, , within mathematics probability theory is a stochastic process on that is usually constructed as a special limit of near-critical branching diffusions.
In mathematics – specifically, in stochastic analysis – an Itô diffusion is a solution to a specific type of stochastic differential equation. That equation is similar to the Langevin equation used in physics to describe the Brownian motion of a particle subjected to a potential in a viscous fluid. Itô diffusions are named after the Japanese mathematician Kiyosi Itô.
In mathematics — specifically, in stochastic analysis — the infinitesimal generator of a Feller process is a Fourier multiplier operator that encodes a great deal of information about the process.
In stochastic calculus, the Doléans-Dade exponential or stochastic exponential of a semimartingale X is the unique strong solution of the stochastic differential equation where denotes the process of left limits, i.e., .
Stochastic mechanics is a framework for describing the dynamics of particles that are subjected to an intrinsic random processes as well as various external forces. The framework provides a derivation of the diffusion equations associated to these stochastic particles. It is best known for its derivation of the Schrödinger equation as the Kolmogorov equation for a certain type of conservative diffusion, and for this purpose it is also referred to as stochastic quantum mechanics.
In stochastic calculus, stochastic logarithm of a semimartingale such that and is the semimartingale given byIn layperson's terms, stochastic logarithm of measures the cumulative percentage change in .