Local time (mathematics)

Last updated
A sample path of an Ito process together with its surface of local times. Local times surface.png
A sample path of an Itō process together with its surface of local times.

In the mathematical theory of stochastic processes, local time is a stochastic process associated with semimartingale processes such as Brownian motion, that characterizes the amount of time a particle has spent at a given level. Local time appears in various stochastic integration formulas, such as Tanaka's formula, if the integrand is not sufficiently smooth. It is also studied in statistical mechanics in the context of random fields.

Contents

Formal definition

For a continuous real-valued semimartingale , the local time of at the point is the stochastic process which is informally defined by

where is the Dirac delta function and is the quadratic variation. It is a notion invented by Paul Lévy. The basic idea is that is an (appropriately rescaled and time-parametrized) measure of how much time has spent at up to time . More rigorously, it may be written as the almost sure limit

which may be shown to always exist. Note that in the special case of Brownian motion (or more generally a real-valued diffusion of the form where is a Brownian motion), the term simply reduces to , which explains why it is called the local time of at . For a discrete state-space process , the local time can be expressed more simply as [1]

Tanaka's formula

Tanaka's formula also provides a definition of local time for an arbitrary continuous semimartingale on [2]

A more general form was proven independently by Meyer [3] and Wang; [4] the formula extends Itô's lemma for twice differentiable functions to a more general class of functions. If is absolutely continuous with derivative which is of bounded variation, then

where is the left derivative.

If is a Brownian motion, then for any the field of local times has a modification which is a.s. Hölder continuous in with exponent , uniformly for bounded and . [5] In general, has a modification that is a.s. continuous in and càdlàg in .

Tanaka's formula provides the explicit Doob–Meyer decomposition for the one-dimensional reflecting Brownian motion, .

Ray–Knight theorems

The field of local times associated to a stochastic process on a space is a well studied topic in the area of random fields. Ray–Knight type theorems relate the field Lt to an associated Gaussian process.

In general Ray–Knight type theorems of the first kind consider the field Lt at a hitting time of the underlying process, whilst theorems of the second kind are in terms of a stopping time at which the field of local times first exceeds a given value.

First Ray–Knight theorem

Let (Bt)t ≥ 0 be a one-dimensional Brownian motion started from B0 = a > 0, and (Wt)t≥0 be a standard two-dimensional Brownian motion started from W0 = 0 ∈ R2. Define the stopping time at which B first hits the origin, . Ray [6] and Knight [7] (independently) showed that

 

 

 

 

(1)

where (Lt)t ≥ 0 is the field of local times of (Bt)t ≥ 0, and equality is in distribution on C[0, a]. The process |Wx|2 is known as the squared Bessel process.

Second Ray–Knight theorem

Let (Bt)t ≥ 0 be a standard one-dimensional Brownian motion B0 = 0 ∈ R, and let (Lt)t ≥ 0 be the associated field of local times. Let Ta be the first time at which the local time at zero exceeds a > 0

Let (Wt)t ≥ 0 be an independent one-dimensional Brownian motion started from W0 = 0, then [8]

 

 

 

 

(2)

Equivalently, the process (which is a process in the spatial variable ) is equal in distribution to the square of a 0-dimensional Bessel process started at , and as such is Markovian.

Generalized Ray–Knight theorems

Results of Ray–Knight type for more general stochastic processes have been intensively studied, and analogue statements of both ( 1 ) and ( 2 ) are known for strongly symmetric Markov processes.

See also

Notes

  1. Karatzas, Ioannis; Shreve, Steven (1991). Brownian Motion and Stochastic Calculus. Springer.
  2. Kallenberg (1997). Foundations of Modern Probability . New York: Springer. pp.  428–449. ISBN   0387949577.
  3. Meyer, Paul-Andre (2002) [1976]. "Un cours sur les intégrales stochastiques". Séminaire de probabilités 1967–1980. Lect. Notes in Math. Vol. 1771. pp. 174–329. doi:10.1007/978-3-540-45530-1_11. ISBN   978-3-540-42813-8.
  4. Wang (1977). "Generalized Itô's formula and additive functionals of Brownian motion". Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete. 41 (2): 153–159. doi: 10.1007/bf00538419 . S2CID   123101077.
  5. Kallenberg (1997). Foundations of Modern Probability . New York: Springer. pp.  370. ISBN   0387949577.
  6. Ray, D. (1963). "Sojourn times of a diffusion process". Illinois Journal of Mathematics . 7 (4): 615–630. doi: 10.1215/ijm/1255645099 . MR   0156383. Zbl   0118.13403.
  7. Knight, F. B. (1963). "Random walks and a sojourn density process of Brownian motion". Transactions of the American Mathematical Society . 109 (1): 56–86. doi: 10.2307/1993647 . JSTOR   1993647.
  8. Marcus; Rosen (2006). Markov Processes, Gaussian Processes and Local Times . New York: Cambridge University Press. pp.  53–56. ISBN   0521863007.

Related Research Articles

<span class="mw-page-title-main">Wiener process</span> Stochastic process generalizing Brownian motion

In mathematics, the Wiener process is a real-valued continuous-time stochastic process named in honor of American mathematician Norbert Wiener for his investigations on the mathematical properties of the one-dimensional Brownian motion. It is often also called Brownian motion due to its historical connection with the physical process of the same name originally observed by Scottish botanist Robert Brown. It is one of the best known Lévy processes and occurs frequently in pure and applied mathematics, economics, quantitative finance, evolutionary biology, and physics.

<span class="mw-page-title-main">Stochastic calculus</span> Calculus on stochastic processes

Stochastic calculus is a branch of mathematics that operates on stochastic processes. It allows a consistent theory of integration to be defined for integrals of stochastic processes with respect to stochastic processes. This field was created and started by the Japanese mathematician Kiyosi Itô during World War II.

<span class="mw-page-title-main">Girsanov theorem</span>

In probability theory, the Girsanov theorem tells how stochastic processes change under changes in measure. The theorem is especially important in the theory of financial mathematics as it tells how to convert from the physical measure which describes the probability that an underlying instrument will take a particular value or values to the risk-neutral measure which is a very useful tool for evaluating the value of derivatives on the underlying.

In probability theory, a Lévy process, named after the French mathematician Paul Lévy, is a stochastic process with independent, stationary increments: it represents the motion of a point whose successive displacements are random, in which displacements in pairwise disjoint time intervals are independent, and displacements in different time intervals of the same length have identical probability distributions. A Lévy process may thus be viewed as the continuous-time analog of a random walk.

A stochastic differential equation (SDE) is a differential equation in which one or more of the terms is a stochastic process, resulting in a solution which is also a stochastic process. SDEs have many applications throughout pure mathematics and are used to model various behaviours of stochastic models such as stock prices, random growth models or physical systems that are subjected to thermal fluctuations.

<span class="mw-page-title-main">Itô calculus</span> Calculus of stochastic differential equations

Itô calculus, named after Kiyosi Itô, extends the methods of calculus to stochastic processes such as Brownian motion. It has important applications in mathematical finance and stochastic differential equations.

In mathematics, quadratic variation is used in the analysis of stochastic processes such as Brownian motion and other martingales. Quadratic variation is just one kind of variation of a process.

In mathematics, a stopped process is a stochastic process that is forced to assume the same value after a prescribed time.

In mathematical analysis, the Russo–Vallois integral is an extension to stochastic processes of the classical Riemann–Stieltjes integral

In probability theory, a real valued stochastic process X is called a semimartingale if it can be decomposed as the sum of a local martingale and a càdlàg adapted finite-variation process. Semimartingales are "good integrators", forming the largest class of processes with respect to which the Itô integral and the Stratonovich integral can be defined.

In the stochastic calculus, Tanaka's formula for the Brownian motion states that

In mathematics – specifically, in stochastic analysis – an Itô diffusion is a solution to a specific type of stochastic differential equation. That equation is similar to the Langevin equation used in physics to describe the Brownian motion of a particle subjected to a potential in a viscous fluid. Itô diffusions are named after the Japanese mathematician Kiyosi Itô.

In mathematics — specifically, in stochastic analysis — the Green measure is a measure associated to an Itō diffusion. There is an associated Green formula representing suitably smooth functions in terms of the Green measure and first exit times of the diffusion. The concepts are named after the British mathematician George Green and are generalizations of the classical Green's function and Green formula to the stochastic case using Dynkin's formula.

In mathematics — specifically, in stochastic analysis — the infinitesimal generator of a Feller process is a Fourier multiplier operator that encodes a great deal of information about the process.

In mathematics, Schilder's theorem is a generalization of the Laplace method from integrals on to functional Wiener integration. The theorem is used in the large deviations theory of stochastic processes. Roughly speaking, out of Schilder's theorem one gets an estimate for the probability that a (scaled-down) sample path of Brownian motion will stray far from the mean path. This statement is made precise using rate functions. Schilder's theorem is generalized by the Freidlin–Wentzell theorem for Itō diffusions.

In mathematics, the Freidlin–Wentzell theorem is a result in the large deviations theory of stochastic processes. Roughly speaking, the Freidlin–Wentzell theorem gives an estimate for the probability that a (scaled-down) sample path of an Itō diffusion will stray far from the mean path. This statement is made precise using rate functions. The Freidlin–Wentzell theorem generalizes Schilder's theorem for standard Brownian motion.

In stochastic calculus, the Doléans-Dade exponential or stochastic exponential of a semimartingale X is the unique strong solution of the stochastic differential equation

In stochastic analysis, a rough path is a generalization of the notion of smooth path allowing to construct a robust solution theory for controlled differential equations driven by classically irregular signals, for example a Wiener process. The theory was developed in the 1990s by Terry Lyons. Several accounts of the theory are available.

The Engelbert–Schmidt zero–one law is a theorem that gives a mathematical criterion for an event associated with a continuous, non-decreasing additive functional of Brownian motion to have probability either 0 or 1, without the possibility of an intermediate value. This zero-one law is used in the study of questions of finiteness and asymptotic behavior for stochastic differential equations. This 0-1 law, published in 1981, is named after Hans-Jürgen Engelbert and the probabilist Wolfgang Schmidt.

In mathematics, stochastic analysis on manifolds or stochastic differential geometry is the study of stochastic analysis over smooth manifolds. It is therefore a synthesis of stochastic analysis and differential geometry.

References