In queueing theory, a discipline within the mathematical theory of probability, a G-network (generalized queueing network, [1] [2] often called a Gelenbe network [3] ) is an open network of G-queues first introduced by Erol Gelenbe as a model for queueing systems with specific control functions, such as traffic re-routing or traffic destruction, as well as a model for neural networks. [4] [5] A G-queue is a network of queues with several types of novel and useful customers:
A product-form solution superficially similar in form to Jackson's theorem, but which requires the solution of a system of non-linear equations for the traffic flows, exists for the stationary distribution of G-networks while the traffic equations of a G-network are in fact surprisingly non-linear, and the model does not obey partial balance. This broke previous assumptions that partial balance was a necessary condition for a product-form solution. A powerful property of G-networks is that they are universal approximators for continuous and bounded functions, so that they can be used to approximate quite general input-output behaviours. [8]
This section includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations .(February 2012) |
A network of m interconnected queues is a G-network if
A queue in such a network is known as a G-queue.
Define the utilization at each node,
where the for satisfy
1 |
2 |
Then writing (n1, ... ,nm) for the state of the network (with queue length ni at node i), if a unique non-negative solution exists to the above equations ( 1 ) and ( 2 ) such that ρi for all i then the stationary probability distribution π exists and is given by
This section includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations .(February 2012) |
It is sufficient to show satisfies the global balance equations which, quite differently from Jackson networks are non-linear. We note that the model also allows for multiple classes.
G-networks have been used in a wide range of applications, including to represent Gene Regulatory Networks, the mix of control and payload in packet networks, neural networks, and the representation of colour images and medical images such as Magnetic Resonance Images.
The response time is the length of time a customer spends in the system. The response time distribution for a single G-queue is known [9] where customers are served using a FCFS discipline at rate μ, with positive arrivals at rate λ+ and negative arrivals at rate λ− which kill customers from the end of the queue. The Laplace transform of response time distribution in this situation is [9] [10]
where λ = λ+ + λ− and ρ = λ+/(λ− + μ), requiring ρ < 1 for stability.
The response time for a tandem pair of G-queues (where customers who finish service at the first node immediately move to the second, then leave the network) is also known, and it is thought extensions to larger networks will be intractable. [10]
In probability theory and statistics, the negative binomial distribution is a discrete probability distribution that models the number of failures in a sequence of independent and identically distributed Bernoulli trials before a specified/constant/fixed number of successes occur. For example, we can define rolling a 6 on some dice as a success, and rolling any other number as a failure, and ask how many failure rolls will occur before we see the third success. In such a case, the probability distribution of the number of failures that appear will be a negative binomial distribution.
Queueing theory is the mathematical study of waiting lines, or queues. A queueing model is constructed so that queue lengths and waiting time can be predicted. Queueing theory is generally considered a branch of operations research because the results are often used when making business decisions about the resources needed to provide a service.
The birth–death process is a special case of continuous-time Markov process where the state transitions are of only two types: "births", which increase the state variable by one and "deaths", which decrease the state by one. It was introduced by William Feller. The model's name comes from a common application, the use of such models to represent the current size of a population where the transitions are literal births and deaths. Birth–death processes have many applications in demography, queueing theory, performance engineering, epidemiology, biology and other areas. They may be used, for example, to study the evolution of bacteria, the number of people with a disease within a population, or the number of customers in line at the supermarket.
In queueing theory, a discipline within the mathematical theory of probability, a Jackson network is a class of queueing network where the equilibrium distribution is particularly simple to compute as the network has a product-form solution. It was the first significant development in the theory of networks of queues, and generalising and applying the ideas of the theorem to search for similar product-form solutions in other networks has been the subject of much research, including ideas used in the development of the Internet. The networks were first identified by James R. Jackson and his paper was re-printed in the journal Management Science’s ‘Ten Most Influential Titles of Management Sciences First Fifty Years.’
A ratio distribution is a probability distribution constructed as the distribution of the ratio of random variables having two other known distributions. Given two random variables X and Y, the distribution of the random variable Z that is formed as the ratio Z = X/Y is a ratio distribution.
In mathematics, Macdonald polynomialsPλ(x; t,q) are a family of orthogonal symmetric polynomials in several variables, introduced by Macdonald in 1987. He later introduced a non-symmetric generalization in 1995. Macdonald originally associated his polynomials with weights λ of finite root systems and used just one variable t, but later realized that it is more natural to associate them with affine root systems rather than finite root systems, in which case the variable t can be replaced by several different variables t=(t1,...,tk), one for each of the k orbits of roots in the affine root system. The Macdonald polynomials are polynomials in n variables x=(x1,...,xn), where n is the rank of the affine root system. They generalize many other families of orthogonal polynomials, such as Jack polynomials and Hall–Littlewood polynomials and Askey–Wilson polynomials, which in turn include most of the named 1-variable orthogonal polynomials as special cases. Koornwinder polynomials are Macdonald polynomials of certain non-reduced root systems. They have deep relationships with affine Hecke algebras and Hilbert schemes, which were used to prove several conjectures made by Macdonald about them.
In queueing theory, a discipline within the mathematical theory of probability, the Pollaczek–Khinchine formula states a relationship between the queue length and service time distribution Laplace transforms for an M/G/1 queue. The term is also used to refer to the relationships between the mean queue length and mean waiting/service time in such a model.
In queueing theory, a discipline within the mathematical theory of probability, an M/M/1 queue represents the queue length in a system having a single server, where arrivals are determined by a Poisson process and job service times have an exponential distribution. The model name is written in Kendall's notation. The model is the most elementary of queueing models and an attractive object of study as closed-form expressions can be obtained for many metrics of interest in this model. An extension of this model with more than one server is the M/M/c queue.
In mathematics, the spectral theory of ordinary differential equations is the part of spectral theory concerned with the determination of the spectrum and eigenfunction expansion associated with a linear ordinary differential equation. In his dissertation, Hermann Weyl generalized the classical Sturm–Liouville theory on a finite closed interval to second order differential operators with singularities at the endpoints of the interval, possibly semi-infinite or infinite. Unlike the classical case, the spectrum may no longer consist of just a countable set of eigenvalues, but may also contain a continuous part. In this case the eigenfunction expansion involves an integral over the continuous part with respect to a spectral measure, given by the Titchmarsh–Kodaira formula. The theory was put in its final simplified form for singular differential equations of even degree by Kodaira and others, using von Neumann's spectral theorem. It has had important applications in quantum mechanics, operator theory and harmonic analysis on semisimple Lie groups.
In probability theory, a product-form solution is a particularly efficient form of solution for determining some metric of a system with distinct sub-components, where the metric for the collection of components can be written as a product of the metric across the different components. Using capital Pi notation a product-form solution has algebraic form
In probability theory and statistics, the Poisson distribution is a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time if these events occur with a known constant mean rate and independently of the time since the last event. It can also be used for the number of events in other types of intervals than time, and in dimension greater than 1.
In queueing theory, a discipline within the mathematical theory of probability, the M/M/c queue is a multi-server queueing model. In Kendall's notation it describes a system where arrivals form a single queue and are governed by a Poisson process, there are c servers, and job service times are exponentially distributed. It is a generalisation of the M/M/1 queue which considers only a single server. The model with infinitely many servers is the M/M/∞ queue.
In queueing theory, a discipline within the mathematical theory of probability, an M/G/1 queue is a queue model where arrivals are Markovian, service times have a General distribution and there is a single server. The model name is written in Kendall's notation, and is an extension of the M/M/1 queue, where service times must be exponentially distributed. The classic application of the M/G/1 queue is to model performance of a fixed head hard disk.
In queueing theory, a discipline within the mathematical theory of probability, the M/M/∞ queue is a multi-server queueing model where every arrival experiences immediate service and does not wait. In Kendall's notation it describes a system where arrivals are governed by a Poisson process, there are infinitely many servers, so jobs do not need to wait for a server. Each job has an exponentially distributed service time. It is a limit of the M/M/c queue model where the number of servers c becomes very large.
In queueing theory, a discipline within the mathematical theory of probability, a heavy traffic approximation involves the matching of a queueing model with a diffusion process under some limiting conditions on the model's parameters. The first such result was published by John Kingman, who showed that when the utilisation parameter of an M/M/1 queue is near 1, a scaled version of the queue length process can be accurately approximated by a reflected Brownian motion.
In queueing theory, a discipline within the mathematical theory of probability, an M/D/1 queue represents the queue length in a system having a single server, where arrivals are determined by a Poisson process and job service times are fixed (deterministic). The model name is written in Kendall's notation. Agner Krarup Erlang first published on this model in 1909, starting the subject of queueing theory. An extension of this model with more than one server is the M/D/c queue.
In queueing theory, a discipline within the mathematical theory of probability, an M/D/c queue represents the queue length in a system having c servers, where arrivals are determined by a Poisson process and job service times are fixed (deterministic). The model name is written in Kendall's notation. Agner Krarup Erlang first published on this model in 1909, starting the subject of queueing theory. The model is an extension of the M/D/1 queue which has only a single server.
In probability and statistics, a factorial moment measure is a mathematical quantity, function or, more precisely, measure that is defined in relation to mathematical objects known as point processes, which are types of stochastic processes often used as mathematical models of physical phenomena representable as randomly positioned points in time, space or both. Moment measures generalize the idea of factorial moments, which are useful for studying non-negative integer-valued random variables.
In computing and communication systems, a work-conserving scheduler is a scheduler that always tries to keep the scheduled resource(s) busy, if there are submitted jobs ready to be scheduled. In contrast, a non-work conserving scheduler is a scheduler that, in some cases, may leave the scheduled resource(s) idle despite the presence of jobs ready to be scheduled.
The Queuing Rule of Thumb (QROT) is a mathematical formula known as the queuing constraint equation when it is used to find an approximation of servers required to service a queue. The formula is written as an inequality relating the number of servers (s), total number of service requestors (N), service time (r), and the maximum time to empty the queue (T):