Decomposition method (queueing theory)

Last updated

In queueing theory, a discipline within the mathematical theory of probability, the decomposition method is an approximate method for the analysis of queueing networks where the network is broken into subsystems which are independently analyzed. [1] [2]

The individual queueing nodes are considered to be independent G/G/1 queues where arrivals are governed by a renewal process and both service time and arrival distributions are parametrised to match the first two moments of data.

Related Research Articles

<span class="mw-page-title-main">Queueing theory</span> Mathematical study of waiting lines, or queues

Queueing theory is the mathematical study of waiting lines, or queues. A queueing model is constructed so that queue lengths and waiting time can be predicted. Queueing theory is generally considered a branch of operations research because the results are often used when making business decisions about the resources needed to provide a service.

<span class="mw-page-title-main">Kendall's notation</span>

In queueing theory, a discipline within the mathematical theory of probability, Kendall's notation is the standard system used to describe and classify a queueing node. D. G. Kendall proposed describing queueing models using three factors written A/S/c in 1953 where A denotes the time between arrivals to the queue, S the service time distribution and c the number of service channels open at the node. It has since been extended to A/S/c/K/N/D where K is the capacity of the queue, N is the size of the population of jobs to be served, and D is the queueing discipline.

In queueing theory, a discipline within the mathematical theory of probability, a G-network is an open network of G-queues first introduced by Erol Gelenbe as a model for queueing systems with specific control functions, such as traffic re-routing or traffic destruction, as well as a model for neural networks. A G-queue is a network of queues with several types of novel and useful customers:

<span class="mw-page-title-main">M/M/1 queue</span> Queue with Markov (Poisson) arrival process, exponential service time distribution and one server

In queueing theory, a discipline within the mathematical theory of probability, an M/M/1 queue represents the queue length in a system having a single server, where arrivals are determined by a Poisson process and job service times have an exponential distribution. The model name is written in Kendall's notation. The model is the most elementary of queueing models and an attractive object of study as closed-form expressions can be obtained for many metrics of interest in this model. An extension of this model with more than one server is the M/M/c queue.

In queueing theory, a discipline within the mathematical theory of probability, Burke's theorem is a theorem asserting that, for the M/M/1 queue, M/M/c queue or M/M/∞ queue in the steady state with arrivals is a Poisson process with rate parameter λ:

  1. The departure process is a Poisson process with rate parameter λ.
  2. At time t the number of customers in the queue is independent of the departure process prior to time t.

In probability theory, a product-form solution is a particularly efficient form of solution for determining some metric of a system with distinct sub-components, where the metric for the collection of components can be written as a product of the metric across the different components. Using capital Pi notation a product-form solution has algebraic form

In queueing theory, a discipline within the mathematical theory of probability, the arrival theorem states that "upon arrival at a station, a job observes the system as if in steady state at an arbitrary instant for the system without that job."

In queueing theory, a discipline within the mathematical theory of probability, quasireversibility is a property of some queues. The concept was first identified by Richard R. Muntz and further developed by Frank Kelly. Quasireversibility differs from reversibility in that a stronger condition is imposed on arrival rates and a weaker condition is applied on probability fluxes. For example, an M/M/1 queue with state-dependent arrival rates and state-dependent service times is reversible, but not quasireversible.

<span class="mw-page-title-main">Fork–join queue</span> Type of queue

In queueing theory, a discipline within the mathematical theory of probability, a fork–join queue is a queue where incoming jobs are split on arrival for service by numerous servers and joined before departure. The model is often used for parallel computations or systems where products need to be obtained simultaneously from different suppliers. The key quantity of interest in this model is usually the time taken to service a complete job. The model has been described as a "key model for the performance analysis of parallel and distributed systems." Few analytical results exist for fork–join queues, but various approximations are known.

In queueing theory, a discipline within the mathematical theory of probability, mean value analysis (MVA) is a recursive technique for computing expected queue lengths, waiting time at queueing nodes and throughput in equilibrium for a closed separable system of queues. The first approximate techniques were published independently by Schweitzer and Bard, followed later by an exact version by Lavenberg and Reiser published in 1980.

In queueing theory, a discipline within the mathematical theory of probability, the M/M/c queue is a multi-server queueing model. In Kendall's notation it describes a system where arrivals form a single queue and are governed by a Poisson process, there are c servers, and job service times are exponentially distributed. It is a generalisation of the M/M/1 queue which considers only a single server. The model with infinitely many servers is the M/M/∞ queue.

In queueing theory, a discipline within the mathematical theory of probability, an M/G/1 queue is a queue model where arrivals are Markovian, service times have a General distribution and there is a single server. The model name is written in Kendall's notation, and is an extension of the M/M/1 queue, where service times must be exponentially distributed. The classic application of the M/G/1 queue is to model performance of a fixed head hard disk.

In queueing theory, a discipline within the mathematical theory of probability, a fluid queue is a mathematical model used to describe the fluid level in a reservoir subject to randomly determined periods of filling and emptying. The term dam theory was used in earlier literature for these models. The model has been used to approximate discrete models, model the spread of wildfires, in ruin theory and to model high speed data networks. The model applies the leaky bucket algorithm to a stochastic source.

In queueing theory, a discipline within the mathematical theory of probability, an M/G/k queue is a queue model where arrivals are Markovian, service times have a General distribution and there are k servers. The model name is written in Kendall's notation, and is an extension of the M/M/c queue, where service times must be exponentially distributed and of the M/G/1 queue with a single server. Most performance metrics for this queueing system are not known and remain an open problem.

In queueing theory, a discipline within the mathematical theory of probability, a bulk queue is a general queueing model where jobs arrive in and/or are served in groups of random size. Batch arrivals have been used to describe large deliveries and batch services to model a hospital out-patient department holding a clinic once a week, a transport link with fixed capacity and an elevator.

In queueing theory, a discipline within the mathematical theory of probability, an M/D/1 queue represents the queue length in a system having a single server, where arrivals are determined by a Poisson process and job service times are fixed (deterministic). The model name is written in Kendall's notation. Agner Krarup Erlang first published on this model in 1909, starting the subject of queueing theory. An extension of this model with more than one server is the M/D/c queue.

In queueing theory, a discipline within the mathematical theory of probability, the flow-equivalent server method is a divide-and-conquer method to solve product form queueing networks inspired by Norton's theorem for electrical circuits. The network is successively split into two, one portion is reconfigured to a closed network and evaluated.

In queueing theory, a discipline within the mathematical theory of probability, the G/G/1 queue represents the queue length in a system with a single server where interarrival times have a general distribution and service times have a (different) general distribution. The evolution of the queue can be described by the Lindley equation.

<span class="mw-page-title-main">Polling system</span>

In queueing theory, a discipline within the mathematical theory of probability, a polling system or polling model is a system where a single server visits a set of queues in some order. The model has applications in computer networks and telecommunications, manufacturing and road traffic management. The term polling system was coined at least as early as 1968 and the earliest study of such a system in 1957 where a single repairman servicing machines in the British cotton industry was modelled.

In queueing theory, a discipline within the mathematical theory of probability, Beneš approach or Beneš method is a result for an exact or good approximation to the probability distribution of queue length. It was introduced by Václav E. Beneš in 1963.

References

  1. Kuehn, P. (1979). "Approximate Analysis of General Queuing Networks by Decomposition". IEEE Transactions on Communications. 27: 113–126. doi:10.1109/TCOM.1979.1094270.
  2. Caldentey, R. (2001). "Approximations for Multi-Class Departure Processes" (PDF). Queueing Systems. 38 (2): 205–212. doi:10.1023/A:1010910531975. S2CID   14383294.