Reflected Brownian motion

Last updated

In probability theory, reflected Brownian motion (or regulated Brownian motion, [1] [2] both with the acronym RBM) is a Wiener process in a space with reflecting boundaries. [3] In the physical literature, this process describes diffusion in a confined space and it is often called confined Brownian motion. For example it can describe the motion of hard spheres in water confined between two walls. [4]

Contents

RBMs have been shown to describe queueing models experiencing heavy traffic [2] as first proposed by Kingman [5] and proven by Iglehart and Whitt. [6] [7]

Definition

A d–dimensional reflected Brownian motion Z is a stochastic process on uniquely defined by

where X(t) is an unconstrained Brownian motion with drift μ and variance Σ, and [9]

with Y(t) a d–dimensional vector where

The reflection matrix describes boundary behaviour. In the interior of the process behaves like a Wiener process; on the boundary "roughly speaking, Z is pushed in direction Rj whenever the boundary surface is hit, where Rj is the jth column of the matrix R." [9] The process Yj is the local time of the process on the corresponding section of the boundary.

Stability conditions

Stability conditions are known for RBMs in 1, 2, and 3 dimensions. "The problem of recurrence classification for SRBMs in four and higher dimensions remains open." [9] In the special case where R is an M-matrix then necessary and sufficient conditions for stability are [9]

  1. R is a non-singular matrix and
  2. R−1μ < 0.

Marginal and stationary distribution

One dimension

The marginal distribution (transient distribution) of a one-dimensional Brownian motion starting at 0 restricted to positive values (a single reflecting barrier at 0) with drift μ and variance σ2 is

for all t  0, (with Φ the cumulative distribution function of the normal distribution) which yields (for μ < 0) when taking t  ∞ an exponential distribution [2]

For fixed t, the distribution of Z(t) coincides with the distribution of the running maximum M(t) of the Brownian motion,

But be aware that the distributions of the processes as a whole are very different. In particular, M(t) is increasing in t, which is not the case for Z(t).

The heat kernel for reflected Brownian motion at :

For the plane above

Multiple dimensions

The stationary distribution of a reflected Brownian motion in multiple dimensions is tractable analytically when there is a product form stationary distribution, [10] which occurs when the process is stable and [11]

where D =  diag(Σ). In this case the probability density function is [8]

where ηk = 2μkγk/Σkk and γ = R−1μ. Closed-form expressions for situations where the product form condition does not hold can be computed numerically as described below in the simulation section.

Simulation

One dimension

In one dimension the simulated process is the absolute value of a Wiener process. The following MATLAB program creates a sample path. [12]

% rbm.mn=10^4;h=10^(-3);t=h.*(0:n);mu=-1;X=zeros(1,n+1);M=X;B=X;B(1)=3;X(1)=3;fork=2:n+1Y=sqrt(h)*randn;U=rand(1);B(k)=B(k-1)+mu*h-Y;M=(Y+sqrt(Y^2-2*h*log(U)))/2;X(k)=max(M-Y,X(k-1)+h*mu-Y);endsubplot(2,1,1)plot(t,X,'k-');subplot(2,1,2)plot(t,X-B,'k-');

The error involved in discrete simulations has been quantified. [13]

Multiple dimensions

QNET allows simulation of steady state RBMs. [14] [15] [16]

Other boundary conditions

Feller described possible boundary condition for the process [17] [18] [19]

See also

Related Research Articles

<span class="mw-page-title-main">Brownian motion</span> Random motion of particles suspended in a fluid

Brownian motion is the random motion of particles suspended in a medium.

<span class="mw-page-title-main">Measure (mathematics)</span> Generalization of mass, length, area and volume

In mathematics, the concept of a measure is a generalization and formalization of geometrical measures and other common notions, such as magnitude, mass, and probability of events. These seemingly distinct concepts have many similarities and can often be treated together in a single mathematical context. Measures are foundational in probability theory, integration theory, and can be generalized to assume negative values, as with electrical charge. Far-reaching generalizations of measure are widely used in quantum physics and physics in general.

<span class="mw-page-title-main">Fokker–Planck equation</span> Partial differential equation

In statistical mechanics and information theory, the Fokker–Planck equation is a partial differential equation that describes the time evolution of the probability density function of the velocity of a particle under the influence of drag forces and random forces, as in Brownian motion. The equation can be generalized to other observables as well. The Fokker-Planck equation has multiple applications in information theory, graph theory, data science, finance, economics etc.

<span class="mw-page-title-main">Geometric Brownian motion</span> Continuous stochastic process

A geometric Brownian motion (GBM) (also known as exponential Brownian motion) is a continuous-time stochastic process in which the logarithm of the randomly varying quantity follows a Brownian motion (also called a Wiener process) with drift. It is an important example of stochastic processes satisfying a stochastic differential equation (SDE); in particular, it is used in mathematical finance to model stock prices in the Black–Scholes model.

In probability theory, a Lévy process, named after the French mathematician Paul Lévy, is a stochastic process with independent, stationary increments: it represents the motion of a point whose successive displacements are random, in which displacements in pairwise disjoint time intervals are independent, and displacements in different time intervals of the same length have identical probability distributions. A Lévy process may thus be viewed as the continuous-time analog of a random walk.

<span class="mw-page-title-main">Lévy distribution</span> Probability distribution

In probability theory and statistics, the Lévy distribution, named after Paul Lévy, is a continuous probability distribution for a non-negative random variable. In spectroscopy, this distribution, with frequency as the dependent variable, is known as a van der Waals profile. It is a special case of the inverse-gamma distribution. It is a stable distribution.

A stochastic differential equation (SDE) is a differential equation in which one or more of the terms is a stochastic process, resulting in a solution which is also a stochastic process. SDEs have many applications throughout pure mathematics and are used to model various behaviours of stochastic models such as stock prices, random growth models or physical systems that are subjected to thermal fluctuations.

<span class="mw-page-title-main">Itô calculus</span> Calculus of stochastic differential equations

Itô calculus, named after Kiyosi Itô, extends the methods of calculus to stochastic processes such as Brownian motion. It has important applications in mathematical finance and stochastic differential equations.

In queueing theory, a discipline within the mathematical theory of probability, a Jackson network is a class of queueing network where the equilibrium distribution is particularly simple to compute as the network has a product-form solution. It was the first significant development in the theory of networks of queues, and generalising and applying the ideas of the theorem to search for similar product-form solutions in other networks has been the subject of much research, including ideas used in the development of the Internet. The networks were first identified by James R. Jackson and his paper was re-printed in the journal Management Science’s ‘Ten Most Influential Titles of Management Sciences First Fifty Years.’

<span class="mw-page-title-main">Inverse Gaussian distribution</span> Family of continuous probability distributions

In probability theory, the inverse Gaussian distribution is a two-parameter family of continuous probability distributions with support on (0,∞).

In mathematics, the theory of optimal stopping or early stopping is concerned with the problem of choosing a time to take a particular action, in order to maximise an expected reward or minimise an expected cost. Optimal stopping problems can be found in areas of statistics, economics, and mathematical finance. A key example of an optimal stopping problem is the secretary problem. Optimal stopping problems can often be written in the form of a Bellman equation, and are therefore often solved using dynamic programming.

In mathematics – specifically, in stochastic analysis – an Itô diffusion is a solution to a specific type of stochastic differential equation. That equation is similar to the Langevin equation used in physics to describe the Brownian motion of a particle subjected to a potential in a viscous fluid. Itô diffusions are named after the Japanese mathematician Kiyosi Itô.

<span class="mw-page-title-main">Harmonic measure</span>

In mathematics, especially potential theory, harmonic measure is a concept related to the theory of harmonic functions that arises from the solution of the classical Dirichlet problem.

In financial econometrics, the Markov-switching multifractal (MSM) is a model of asset returns developed by Laurent E. Calvet and Adlai J. Fisher that incorporates stochastic volatility components of heterogeneous durations. MSM captures the outliers, log-memory-like volatility persistence and power variation of financial returns. In currency and equity series, MSM compares favorably with standard volatility models such as GARCH(1,1) and FIGARCH both in- and out-of-sample. MSM is used by practitioners in the financial industry to forecast volatility, compute value-at-risk, and price derivatives.

In mathematics probability theory, a basic affine jump diffusion (basic AJD) is a stochastic process Z of the form

In queueing theory, a discipline within the mathematical theory of probability, a fluid queue is a mathematical model used to describe the fluid level in a reservoir subject to randomly determined periods of filling and emptying. The term dam theory was used in earlier literature for these models. The model has been used to approximate discrete models, model the spread of wildfires, in ruin theory and to model high speed data networks. The model applies the leaky bucket algorithm to a stochastic source.

In queueing theory, a discipline within the mathematical theory of probability, a heavy traffic approximation is the matching of a queueing model with a diffusion process under some limiting conditions on the model's parameters. The first such result was published by John Kingman who showed that when the utilisation parameter of an M/M/1 queue is near 1 a scaled version of the queue length process can be accurately approximated by a reflected Brownian motion.

In probability theory, a McKean–Vlasov process is a stochastic process described by a stochastic differential equation where the coefficients of the diffusion depend on the distribution of the solution itself. The equations are a model for Vlasov equation and were first studied by Henry McKean in 1966. It is an example of propagation of chaos, in that it can be obtained as a limit of a mean-field system of interacting particles: as the number of particles tends to infinity, the interactions between any single particle and the rest of the pool will only depend on the particle itself.

An additive process, in probability theory, is a cadlag, continuous in probability stochastic process with independent increments. An additive process is the generalization of a Lévy process. An example of an additive process that is not a Lévy process is a Brownian motion with a time-dependent drift. The additive process was introduced by Paul Lévy in 1937.

In physics and mathematics, the Klein–Kramers equation or sometimes referred as Kramers–Chandrasekhar equation is a partial differential equation that describes the probability density function f of a Brownian particle in phase space (r, p). It is a special case of the Fokker–Planck equation.

References

  1. Dieker, A. B. (2011). "Reflected Brownian Motion". Wiley Encyclopedia of Operations Research and Management Science. doi:10.1002/9780470400531.eorms0711. ISBN   9780470400531.
  2. 1 2 3 Harrison, J. Michael (1985). Brownian Motion and Stochastic Flow Systems (PDF). John Wiley & Sons. ISBN   978-0471819394.
  3. Veestraeten, D. (2004). "The Conditional Probability Density Function for a Reflected Brownian Motion". Computational Economics. 24 (2): 185–207. doi:10.1023/B:CSEM.0000049491.13935.af. S2CID   121673717.
  4. Faucheux, Luc P.; Libchaber, Albert J. (1994-06-01). "Confined Brownian motion". Physical Review E. 49 (6): 5158–5163. doi:10.1103/PhysRevE.49.5158. ISSN   1063-651X.
  5. Kingman, J. F. C. (1962). "On Queues in Heavy Traffic". Journal of the Royal Statistical Society. Series B (Methodological). 24 (2): 383–392. doi:10.1111/j.2517-6161.1962.tb00465.x. JSTOR   2984229.
  6. Iglehart, Donald L.; Whitt, Ward (1970). "Multiple Channel Queues in Heavy Traffic. I". Advances in Applied Probability. 2 (1): 150–177. doi:10.2307/3518347. JSTOR   3518347. S2CID   202104090.
  7. Iglehart, Donald L.; Ward, Whitt (1970). "Multiple Channel Queues in Heavy Traffic. II: Sequences, Networks, and Batches" (PDF). Advances in Applied Probability. 2 (2): 355–369. doi:10.2307/1426324. JSTOR   1426324. S2CID   120281300 . Retrieved 30 Nov 2012.
  8. 1 2 Harrison, J. M.; Williams, R. J. (1987). "Brownian models of open queueing networks with homogeneous customer populations" (PDF). Stochastics. 22 (2): 77. doi:10.1080/17442508708833469.
  9. 1 2 3 4 Bramson, M.; Dai, J. G.; Harrison, J. M. (2010). "Positive recurrence of reflecting Brownian motion in three dimensions" (PDF). The Annals of Applied Probability. 20 (2): 753. arXiv: 1009.5746 . doi:10.1214/09-AAP631. S2CID   2251853.
  10. Harrison, J. M.; Williams, R. J. (1992). "Brownian Models of Feedforward Queueing Networks: Quasireversibility and Product Form Solutions". The Annals of Applied Probability. 2 (2): 263. doi: 10.1214/aoap/1177005704 . JSTOR   2959751.
  11. Harrison, J. M.; Reiman, M. I. (1981). "On the Distribution of Multidimensional Reflected Brownian Motion". SIAM Journal on Applied Mathematics. 41 (2): 345–361. doi:10.1137/0141030.
  12. Kroese, Dirk P.; Taimre, Thomas; Botev, Zdravko I. (2011). Handbook of Monte Carlo Methods . John Wiley & Sons. p.  202. ISBN   978-1118014950.
  13. Asmussen, S.; Glynn, P.; Pitman, J. (1995). "Discretization Error in Simulation of One-Dimensional Reflecting Brownian Motion". The Annals of Applied Probability. 5 (4): 875. doi: 10.1214/aoap/1177004597 . JSTOR   2245096.
  14. Dai, Jim G.; Harrison, J. Michael (1991). "Steady-State Analysis of RBM in a Rectangle: Numerical Methods and A Queueing Application". The Annals of Applied Probability. 1 (1): 16–35. CiteSeerX   10.1.1.44.5520 . doi:10.1214/aoap/1177005979. JSTOR   2959623.
  15. Dai, Jiangang "Jim" (1990). "Section A.5 (code for BNET)" (PDF). Steady-state analysis of reflected Brownian motions: characterization, numerical methods and queueing applications (Ph. D. thesis) (Thesis). Stanford University. Dept. of Mathematics. Retrieved 5 December 2012.
  16. Dai, J. G.; Harrison, J. M. (1992). "Reflected Brownian Motion in an Orthant: Numerical Methods for Steady-State Analysis" (PDF). The Annals of Applied Probability. 2 (1): 65–86. doi: 10.1214/aoap/1177005771 . JSTOR   2959654.
  17. 1 2 3 4 5 Skorokhod, A. V. (1962). "Stochastic Equations for Diffusion Processes in a Bounded Region. II". Theory of Probability and Its Applications. 7: 3–23. doi:10.1137/1107002.
  18. Feller, W. (1954). "Diffusion processes in one dimension". Transactions of the American Mathematical Society. 77: 1–31. doi: 10.1090/S0002-9947-1954-0063607-6 . MR   0063607.
  19. Engelbert, H. J.; Peskir, G. (2012). "Stochastic Differential Equations for Sticky Brownian Motion" (PDF). Probab. Statist. Group Manchester Research Report (5).
  20. Chung, K. L.; Zhao, Z. (1995). "Killed Brownian Motion". From Brownian Motion to Schrödinger's Equation. Grundlehren der mathematischen Wissenschaften. Vol. 312. p. 31. doi:10.1007/978-3-642-57856-4_2. ISBN   978-3-642-63381-2.
  21. Itō, K.; McKean, H. P. (1996). "Time changes and killing". Diffusion Processes and their Sample Paths . pp.  164. doi:10.1007/978-3-642-62025-6_6. ISBN   978-3-540-60629-1.