Exponential distribution

Last updated

Exponential
Probability density function
Exponential distribution pdf - public domain.svg
Cumulative distribution function
Exponential distribution cdf - public domain.svg
Parameters rate, or inverse scale
Support
PDF
CDF
Quantile
Mean
Median
Mode
Variance
Skewness
Excess kurtosis
Entropy
MGF
CF
Fisher information
Kullback–Leibler divergence
Expected shortfall

In probability theory and statistics, the exponential distribution or negative exponential distribution is the probability distribution of the distance between events in a Poisson point process, i.e., a process in which events occur continuously and independently at a constant average rate; the distance parameter could be any meaningful mono-dimensional measure of the process, such as time between production errors, or length along a roll of fabric in the weaving manufacturing process. It is a particular case of the gamma distribution. It is the continuous analogue of the geometric distribution, and it has the key property of being memoryless. In addition to being used for the analysis of Poisson point processes it is found in various other contexts.

Contents

The exponential distribution is not the same as the class of exponential families of distributions. This is a large class of probability distributions that includes the exponential distribution as one of its members, but also includes many other distributions, like the normal, binomial, gamma, and Poisson distributions.

Definitions

Probability density function

The probability density function (pdf) of an exponential distribution is

Here λ > 0 is the parameter of the distribution, often called the rate parameter. The distribution is supported on the interval [0, ∞). If a random variable X has this distribution, we write X ~ Exp(λ).

The exponential distribution exhibits infinite divisibility.

Cumulative distribution function

The cumulative distribution function is given by

Alternative parametrization

The exponential distribution is sometimes parametrized in terms of the scale parameter β = 1/λ, which is also the mean:

Properties

Mean, variance, moments, and median

The mean is the probability mass centre, that is, the first moment. Mean exp.svg
The mean is the probability mass centre, that is, the first moment.
The median is the preimage F (1/2). Median exp.svg
The median is the preimage F (1/2).

The mean or expected value of an exponentially distributed random variable X with rate parameter λ is given by

In light of the examples given below, this makes sense; a person who receives an average of two telephone calls per hour can expect that the time between consecutive calls will be 0.5 hour, or 30 minutes.

The variance of X is given by

so the standard deviation is equal to the mean.

The moments of X, for are given by

The central moments of X, for are given by

where !n is the subfactorial of n

The median of X is given by

where ln refers to the natural logarithm. Thus the absolute difference between the mean and median is

in accordance with the median-mean inequality.

Memorylessness property of exponential random variable

An exponentially distributed random variable T obeys the relation

This can be seen by considering the complementary cumulative distribution function:

When T is interpreted as the waiting time for an event to occur relative to some initial time, this relation implies that, if T is conditioned on a failure to observe the event over some initial period of time s, the distribution of the remaining waiting time is the same as the original unconditional distribution. For example, if an event has not occurred after 30 seconds, the conditional probability that occurrence will take at least 10 more seconds is equal to the unconditional probability of observing the event more than 10 seconds after the initial time.

The exponential distribution and the geometric distribution are the only memoryless probability distributions.

The exponential distribution is consequently also necessarily the only continuous probability distribution that has a constant failure rate.

Quantiles

Tukey criteria for anomalies. Tukey anomaly criteria for Exponential PDF.png
Tukey criteria for anomalies.

The quantile function (inverse cumulative distribution function) for Exp(λ) is

The quartiles are therefore:

And as a consequence the interquartile range is ln(3)/λ.

Conditional Value at Risk (Expected Shortfall)

The conditional value at risk (CVaR) also known as the expected shortfall or superquantile for Exp(λ) is derived as follows: [1]

Buffered Probability of Exceedance (bPOE)

The buffered probability of exceedance is one minus the probability level at which the CVaR equals the threshold . It is derived as follows: [1]

Kullback–Leibler divergence

The directed Kullback–Leibler divergence in nats of ("approximating" distribution) from ('true' distribution) is given by

Maximum entropy distribution

Among all continuous probability distributions with support [0, ∞) and mean μ, the exponential distribution with λ = 1/μ has the largest differential entropy. In other words, it is the maximum entropy probability distribution for a random variate X which is greater than or equal to zero and for which E[X] is fixed. [2]

Distribution of the minimum of exponential random variables

Let X1, …, Xn be independent exponentially distributed random variables with rate parameters λ1, …, λn. Then

is also exponentially distributed, with parameter

This can be seen by considering the complementary cumulative distribution function:

The index of the variable which achieves the minimum is distributed according to the categorical distribution

A proof can be seen by letting . Then,

Note that

is not exponentially distributed, if X1, …, Xn do not all have parameter 0. [3]

Joint moments of i.i.d. exponential order statistics

Let be independent and identically distributed exponential random variables with rate parameter λ. Let denote the corresponding order statistics. For , the joint moment of the order statistics and is given by

This can be seen by invoking the law of total expectation and the memoryless property:

The first equation follows from the law of total expectation. The second equation exploits the fact that once we condition on , it must follow that . The third equation relies on the memoryless property to replace with .

Sum of two independent exponential random variables

The probability distribution function (PDF) of a sum of two independent random variables is the convolution of their individual PDFs. If and are independent exponential random variables with respective rate parameters and then the probability density of is given by

The entropy of this distribution is available in closed form: assuming (without loss of generality), then

where is the Euler-Mascheroni constant, and is the digamma function. [4]

In the case of equal rate parameters, the result is an Erlang distribution with shape 2 and parameter which in turn is a special case of gamma distribution.

The sum of n independent Exp(λ) exponential random variables is Gamma(n, λ) gamma distributed.

Other related distributions:

Statistical inference

Below, suppose random variable X is exponentially distributed with rate parameter λ, and are n independent samples from X, with sample mean .

Parameter estimation

The maximum likelihood estimator for λ is constructed as follows.

The likelihood function for λ, given an independent and identically distributed sample x = (x1, …, xn) drawn from the variable, is:

where:

is the sample mean.

The derivative of the likelihood function's logarithm is:

Consequently, the maximum likelihood estimate for the rate parameter is:

This is not an unbiased estimator of although is an unbiased [6] MLE [7] estimator of and the distribution mean.

The bias of is equal to

which yields the bias-corrected maximum likelihood estimator

An approximate minimizer of mean squared error (see also: bias–variance tradeoff) can be found, assuming a sample size greater than two, with a correction factor to the MLE:

This is derived from the mean and variance of the inverse-gamma distribution, . [8]

Fisher information

The Fisher information, denoted , for an estimator of the rate parameter is given as:

Plugging in the distribution and solving gives:

This determines the amount of information each independent sample of an exponential distribution carries about the unknown rate parameter .

Confidence intervals

The 100(1 − α)% confidence interval for the rate parameter of an exponential distribution is given by: [9]

which is also equal to:

where χ2
p,v
is the 100(p) percentile of the chi squared distribution with v degrees of freedom, n is the number of observations of inter-arrival times in the sample, and x-bar is the sample average. A simple approximation to the exact interval endpoints can be derived using a normal approximation to the χ2
p,v
distribution. This approximation gives the following values for a 95% confidence interval:

This approximation may be acceptable for samples containing at least 15 to 20 elements. [10]

Bayesian inference

The conjugate prior for the exponential distribution is the gamma distribution (of which the exponential distribution is a special case). The following parameterization of the gamma probability density function is useful:

The posterior distribution p can then be expressed in terms of the likelihood function defined above and a gamma prior:

Now the posterior density p has been specified up to a missing normalizing constant. Since it has the form of a gamma pdf, this can easily be filled in, and one obtains:

Here the hyperparameter α can be interpreted as the number of prior observations, and β as the sum of the prior observations. The posterior mean here is:

Occurrence and applications

Occurrence of events

The exponential distribution occurs naturally when describing the lengths of the inter-arrival times in a homogeneous Poisson process.

The exponential distribution may be viewed as a continuous counterpart of the geometric distribution, which describes the number of Bernoulli trials necessary for a discrete process to change state. In contrast, the exponential distribution describes the time for a continuous process to change state.

In real-world scenarios, the assumption of a constant rate (or probability per unit time) is rarely satisfied. For example, the rate of incoming phone calls differs according to the time of day. But if we focus on a time interval during which the rate is roughly constant, such as from 2 to 4 p.m. during work days, the exponential distribution can be used as a good approximate model for the time until the next phone call arrives. Similar caveats apply to the following examples which yield approximately exponentially distributed variables:

Exponential variables can also be used to model situations where certain events occur with a constant probability per unit length, such as the distance between mutations on a DNA strand, or between roadkills on a given road.

In queuing theory, the service times of agents in a system (e.g. how long it takes for a bank teller etc. to serve a customer) are often modeled as exponentially distributed variables. (The arrival of customers for instance is also modeled by the Poisson distribution if the arrivals are independent and distributed identically.) The length of a process that can be thought of as a sequence of several independent tasks follows the Erlang distribution (which is the distribution of the sum of several independent exponentially distributed variables). Reliability theory and reliability engineering also make extensive use of the exponential distribution. Because of the memoryless property of this distribution, it is well-suited to model the constant hazard rate portion of the bathtub curve used in reliability theory. It is also very convenient because it is so easy to add failure rates in a reliability model. The exponential distribution is however not appropriate to model the overall lifetime of organisms or technical devices, because the "failure rates" here are not constant: more failures occur for very young and for very old systems.

Fitted cumulative exponential distribution to annually maximum 1-day rainfalls using CumFreq FitExponDistr.tif
Fitted cumulative exponential distribution to annually maximum 1-day rainfalls using CumFreq

In physics, if you observe a gas at a fixed temperature and pressure in a uniform gravitational field, the heights of the various molecules also follow an approximate exponential distribution, known as the Barometric formula. This is a consequence of the entropy property mentioned below.

In hydrology, the exponential distribution is used to analyze extreme values of such variables as monthly and annual maximum values of daily rainfall and river discharge volumes. [12]

The blue picture illustrates an example of fitting the exponential distribution to ranked annually maximum one-day rainfalls showing also the 90% confidence belt based on the binomial distribution. The rainfall data are represented by plotting positions as part of the cumulative frequency analysis.

In operating-rooms management, the distribution of surgery duration for a category of surgeries with no typical work-content (like in an emergency room, encompassing all types of surgeries).

Prediction

Having observed a sample of n data points from an unknown exponential distribution a common task is to use these samples to make predictions about future data from the same source. A common predictive distribution over future samples is the so-called plug-in distribution, formed by plugging a suitable estimate for the rate parameter λ into the exponential density function. A common choice of estimate is the one provided by the principle of maximum likelihood, and using this yields the predictive density over a future sample xn+1, conditioned on the observed samples x = (x1, ..., xn) given by

The Bayesian approach provides a predictive distribution which takes into account the uncertainty of the estimated parameter, although this may depend crucially on the choice of prior.

A predictive distribution free of the issues of choosing priors that arise under the subjective Bayesian approach is

which can be considered as

  1. a frequentist confidence distribution, obtained from the distribution of the pivotal quantity ; [13]
  2. a profile predictive likelihood, obtained by eliminating the parameter λ from the joint likelihood of xn+1 and λ by maximization; [14]
  3. an objective Bayesian predictive posterior distribution, obtained using the non-informative Jeffreys prior 1/λ;
  4. the Conditional Normalized Maximum Likelihood (CNML) predictive distribution, from information theoretic considerations. [15]

The accuracy of a predictive distribution may be measured using the distance or divergence between the true exponential distribution with rate parameter, λ0, and the predictive distribution based on the sample x. The Kullback–Leibler divergence is a commonly used, parameterisation free measure of the difference between two distributions. Letting Δ(λ0||p) denote the Kullback–Leibler divergence between an exponential with rate parameter λ0 and a predictive distribution p it can be shown that

where the expectation is taken with respect to the exponential distribution with rate parameter λ0 ∈ (0, ∞), and ψ( · ) is the digamma function. It is clear that the CNML predictive distribution is strictly superior to the maximum likelihood plug-in distribution in terms of average Kullback–Leibler divergence for all sample sizes n > 0.

Random variate generation

A conceptually very simple method for generating exponential variates is based on inverse transform sampling: Given a random variate U drawn from the uniform distribution on the unit interval (0, 1), the variate

has an exponential distribution, where F−1 is the quantile function, defined by

Moreover, if U is uniform on (0, 1), then so is 1 − U. This means one can generate exponential variates as follows:

Other methods for generating exponential variates are discussed by Knuth [16] and Devroye. [17]

A fast method for generating a set of ready-ordered exponential variates without using a sorting routine is also available. [17]

See also

Related Research Articles

<span class="mw-page-title-main">Pareto distribution</span> Probability distribution

The Pareto distribution, named after the Italian civil engineer, economist, and sociologist Vilfredo Pareto, is a power-law probability distribution that is used in description of social, quality control, scientific, geophysical, actuarial, and many other types of observable phenomena; the principle originally applied to describing the distribution of wealth in a society, fitting the trend that a large portion of wealth is held by a small fraction of the population. The Pareto principle or "80-20 rule" stating that 80% of outcomes are due to 20% of causes was named in honour of Pareto, but the concepts are distinct, and only Pareto distributions with shape value of log45 ≈ 1.16 precisely reflect it. Empirical observation has shown that this 80-20 distribution fits a wide range of cases, including natural phenomena and human activities.

<span class="mw-page-title-main">Chi-squared distribution</span> Probability distribution and special case of gamma distribution

In probability theory and statistics, the chi-squared distribution with degrees of freedom is the distribution of a sum of the squares of independent standard normal random variables. The chi-squared distribution is a special case of the gamma distribution and is one of the most widely used probability distributions in inferential statistics, notably in hypothesis testing and in construction of confidence intervals. This distribution is sometimes called the central chi-squared distribution, a special case of the more general noncentral chi-squared distribution.

In statistics, a statistic is sufficient with respect to a statistical model and its associated unknown parameter if "no other statistic that can be calculated from the same sample provides any additional information as to the value of the parameter". In particular, a statistic is sufficient for a family of probability distributions if the sample from which it is calculated gives no additional information than the statistic, as to which of those probability distributions is the sampling distribution.

<span class="mw-page-title-main">Weibull distribution</span> Continuous probability distribution

In probability theory and statistics, the Weibull distribution is a continuous probability distribution. It models a broad range of random variables, largely in the nature of a time to failure or time between events. Examples are maximum one-day rainfalls and the time a user spends on a web page.

<span class="mw-page-title-main">Gamma distribution</span> Probability distribution

In probability theory and statistics, the gamma distribution is a versatile two-parameter family of continuous probability distributions. The exponential distribution, Erlang distribution, and chi-squared distribution are special cases of the gamma distribution. There are two equivalent parameterizations in common use:

  1. With a shape parameter k and a scale parameter θ
  2. With a shape parameter and an inverse scale parameter , called a rate parameter.
<span class="mw-page-title-main">Gumbel distribution</span> Particular case of the generalized extreme value distribution

In probability theory and statistics, the Gumbel distribution is used to model the distribution of the maximum of a number of samples of various distributions.

In probability theory, a compound Poisson distribution is the probability distribution of the sum of a number of independent identically-distributed random variables, where the number of terms to be added is itself a Poisson-distributed variable. The result can be either a continuous or a discrete distribution.

<span class="mw-page-title-main">Laplace distribution</span> Probability distribution

In probability theory and statistics, the Laplace distribution is a continuous probability distribution named after Pierre-Simon Laplace. It is also sometimes called the double exponential distribution, because it can be thought of as two exponential distributions spliced together along the abscissa, although the term is also sometimes used to refer to the Gumbel distribution. The difference between two independent identically distributed exponential random variables is governed by a Laplace distribution, as is a Brownian motion evaluated at an exponentially distributed random time. Increments of Laplace motion or a variance gamma process evaluated over the time scale also have a Laplace distribution.

<span class="mw-page-title-main">Dirichlet distribution</span> Probability distribution

In probability and statistics, the Dirichlet distribution (after Peter Gustav Lejeune Dirichlet), often denoted , is a family of continuous multivariate probability distributions parameterized by a vector of positive reals. It is a multivariate generalization of the beta distribution, hence its alternative name of multivariate beta distribution (MBD). Dirichlet distributions are commonly used as prior distributions in Bayesian statistics, and in fact, the Dirichlet distribution is the conjugate prior of the categorical distribution and multinomial distribution.

Variational Bayesian methods are a family of techniques for approximating intractable integrals arising in Bayesian inference and machine learning. They are typically used in complex statistical models consisting of observed variables as well as unknown parameters and latent variables, with various sorts of relationships among the three types of random variables, as might be described by a graphical model. As typical in Bayesian inference, the parameters and latent variables are grouped together as "unobserved variables". Variational Bayesian methods are primarily used for two purposes:

  1. To provide an analytical approximation to the posterior probability of the unobserved variables, in order to do statistical inference over these variables.
  2. To derive a lower bound for the marginal likelihood of the observed data. This is typically used for performing model selection, the general idea being that a higher marginal likelihood for a given model indicates a better fit of the data by that model and hence a greater probability that the model in question was the one that generated the data.

In statistics and information theory, a maximum entropy probability distribution has entropy that is at least as great as that of all other members of a specified class of probability distributions. According to the principle of maximum entropy, if nothing is known about a distribution except that it belongs to a certain class, then the distribution with the largest entropy should be chosen as the least-informative default. The motivation is twofold: first, maximizing entropy minimizes the amount of prior information built into the distribution; second, many physical systems tend to move towards maximal entropy configurations over time.

Expected shortfall (ES) is a risk measure—a concept used in the field of financial risk measurement to evaluate the market risk or credit risk of a portfolio. The "expected shortfall at q% level" is the expected return on the portfolio in the worst of cases. ES is an alternative to value at risk that is more sensitive to the shape of the tail of the loss distribution.

A ratio distribution is a probability distribution constructed as the distribution of the ratio of random variables having two other known distributions. Given two random variables X and Y, the distribution of the random variable Z that is formed as the ratio Z = X/Y is a ratio distribution.

In probability theory and statistics, the normal-gamma distribution is a bivariate four-parameter family of continuous probability distributions. It is the conjugate prior of a normal distribution with unknown mean and precision.

In financial mathematics, tail value at risk (TVaR), also known as tail conditional expectation (TCE) or conditional tail expectation (CTE), is a risk measure associated with the more general value at risk. It quantifies the expected value of the loss given that an event outside a given probability level has occurred.

<span class="mw-page-title-main">Normal-inverse-gamma distribution</span>

In probability theory and statistics, the normal-inverse-gamma distribution is a four-parameter family of multivariate continuous probability distributions. It is the conjugate prior of a normal distribution with unknown mean and variance.

Financial models with long-tailed distributions and volatility clustering have been introduced to overcome problems with the realism of classical financial models. These classical models of financial time series typically assume homoskedasticity and normality cannot explain stylized phenomena such as skewness, heavy tails, and volatility clustering of the empirical asset returns in finance. In 1963, Benoit Mandelbrot first used the stable distribution to model the empirical distributions which have the skewness and heavy-tail property. Since -stable distributions have infinite -th moments for all , the tempered stable processes have been proposed for overcoming this limitation of the stable distribution.

<span class="mw-page-title-main">Poisson distribution</span> Discrete probability distribution

In probability theory and statistics, the Poisson distribution is a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time if these events occur with a known constant mean rate and independently of the time since the last event. It can also be used for the number of events in other types of intervals than time, and in dimension greater than 1.

A geometric stable distribution or geo-stable distribution is a type of leptokurtic probability distribution. Geometric stable distributions were introduced in Klebanov, L. B., Maniya, G. M., and Melamed, I. A. (1985). A problem of Zolotarev and analogs of infinitely divisible and stable distributions in a scheme for summing a random number of random variables. These distributions are analogues for stable distributions for the case when the number of summands is random, independent of the distribution of summand, and having geometric distribution. The geometric stable distribution may be symmetric or asymmetric. A symmetric geometric stable distribution is also referred to as a Linnik distribution. The Laplace distribution and asymmetric Laplace distribution are special cases of the geometric stable distribution. The Mittag-Leffler distribution is also a special case of a geometric stable distribution.

In probability theory, a subgaussian distribution, the distribution of a subgaussian random variable, is a probability distribution with strong tail decay. More specifically, the tails of a subgaussian distribution are dominated by the tails of a Gaussian. This property gives subgaussian distributions their name.

References

  1. 1 2 Norton, Matthew; Khokhlov, Valentyn; Uryasev, Stan (2019). "Calculating CVaR and bPOE for common probability distributions with application to portfolio optimization and density estimation" (PDF). Annals of Operations Research. 299 (1–2). Springer: 1281–1315. doi:10.1007/s10479-019-03373-1. Archived from the original (PDF) on 2023-03-31. Retrieved 2023-02-27.
  2. Park, Sung Y.; Bera, Anil K. (2009). "Maximum entropy autoregressive conditional heteroskedasticity model" (PDF). Journal of Econometrics. 150 (2). Elsevier: 219–230. doi:10.1016/j.jeconom.2008.12.014. Archived from the original (PDF) on 2016-03-07. Retrieved 2011-06-02.
  3. Michael, Lugo. "The expectation of the maximum of exponentials" (PDF). Archived from the original (PDF) on 20 December 2016. Retrieved 13 December 2016.
  4. Eckford, Andrew W.; Thomas, Peter J. (2016). "Entropy of the sum of two independent, non-identically-distributed exponential random variables". arXiv: 1609.02911 [cs.IT].
  5. Ibe, Oliver C. (2014). Fundamentals of Applied Probability and Random Processes (2nd ed.). Academic Press. p. 128. ISBN   9780128010358.
  6. Richard Arnold Johnson; Dean W. Wichern (2007). Applied Multivariate Statistical Analysis. Pearson Prentice Hall. ISBN   978-0-13-187715-3 . Retrieved 10 August 2012.
  7. NIST/SEMATECH e-Handbook of Statistical Methods
  8. Elfessi, Abdulaziz; Reineke, David M. (2001). "A Bayesian Look at Classical Estimation: The Exponential Distribution". Journal of Statistics Education. 9 (1). doi: 10.1080/10691898.2001.11910648 .
  9. Ross, Sheldon M. (2009). Introduction to probability and statistics for engineers and scientists (4th ed.). Associated Press. p. 267. ISBN   978-0-12-370483-2.
  10. Guerriero, V. (2012). "Power Law Distribution: Method of Multi-scale Inferential Statistics". Journal of Modern Mathematics Frontier. 1: 21–28.
  11. "Cumfreq, a free computer program for cumulative frequency analysis".
  12. Ritzema, H.P., ed. (1994). Frequency and Regression Analysis. Chapter 6 in: Drainage Principles and Applications, Publication 16, International Institute for Land Reclamation and Improvement (ILRI), Wageningen, The Netherlands. pp.  175–224. ISBN   90-70754-33-9.
  13. Lawless, J. F.; Fredette, M. (2005). "Frequentist predictions intervals and predictive distributions". Biometrika. 92 (3): 529–542. doi:10.1093/biomet/92.3.529.
  14. Bjornstad, J.F. (1990). "Predictive Likelihood: A Review". Statist. Sci. 5 (2): 242–254. doi: 10.1214/ss/1177012175 .
  15. D. F. Schmidt and E. Makalic, "Universal Models for the Exponential Distribution", IEEE Transactions on Information Theory , Volume 55, Number 7, pp. 3087–3090, 2009 doi : 10.1109/TIT.2009.2018331
  16. Donald E. Knuth (1998). The Art of Computer Programming , volume 2: Seminumerical Algorithms, 3rd edn. Boston: Addison–Wesley. ISBN   0-201-89684-2. See section 3.4.1, p. 133.
  17. 1 2 Luc Devroye (1986). Non-Uniform Random Variate Generation . New York: Springer-Verlag. ISBN   0-387-96305-7. See chapter IX, section 2, pp. 392–401.