Laplace distribution

Last updated
Laplace
Probability density function
Laplace pdf mod.svg
Cumulative distribution function
Laplace cdf mod.svg
Parameters location (real)
scale (real)
Support
PDF
CDF
Quantile
Mean
Median
Mode
Variance
MAD
Skewness
Excess kurtosis
Entropy
MGF
CF
Expected shortfall [1]

In probability theory and statistics, the Laplace distribution is a continuous probability distribution named after Pierre-Simon Laplace. It is also sometimes called the double exponential distribution, because it can be thought of as two exponential distributions (with an additional location parameter) spliced together along the abscissa, although the term is also sometimes used to refer to the Gumbel distribution. The difference between two independent identically distributed exponential random variables is governed by a Laplace distribution, as is a Brownian motion evaluated at an exponentially distributed random time[ citation needed ]. Increments of Laplace motion or a variance gamma process evaluated over the time scale also have a Laplace distribution.

Contents

Definitions

Probability density function

A random variable has a distribution if its probability density function is

were is a location parameter, and , which is sometimes referred to as the "diversity", is a scale parameter. If and , the positive half-line is exactly an exponential distribution scaled by 1/2.

The probability density function of the Laplace distribution is also reminiscent of the normal distribution; however, whereas the normal distribution is expressed in terms of the squared difference from the mean , the Laplace density is expressed in terms of the absolute difference from the mean. Consequently, the Laplace distribution has fatter tails than the normal distribution. It is a special case of the generalized normal distribution and the hyperbolic distribution. Continuous symmetric distributions that have exponential tails, like the Laplace distribution, but which have probability density functions that are differentiable at the mode include the logistic distribution, hyperbolic secant distribution, and the Champernowne distribution.

Cumulative distribution function

The Laplace distribution is easy to integrate (if one distinguishes two symmetric cases) due to the use of the absolute value function. Its cumulative distribution function is as follows:

The inverse cumulative distribution function is given by

Properties

Moments

Probability of a Laplace being greater than another

Let be independent laplace random variables: and , and we want to compute .

The probability of can be reduced (using the properties below) to , where . This probability is equal to

When , both expressions are replaced by their limit as :

To compute the case for , note that

since when

Relation to the exponential distribution

A Laplace random variable can be represented as the difference of two independent and identically distributed (iid) exponential random variables. [2] One way to show this is by using the characteristic function approach. For any set of independent continuous random variables, for any linear combination of those variables, its characteristic function (which uniquely determines the distribution) can be acquired by multiplying the corresponding characteristic functions.

Consider two i.i.d random variables . The characteristic functions for are

respectively. On multiplying these characteristic functions (equivalent to the characteristic function of the sum of the random variables ), the result is

This is the same as the characteristic function for , which is

Sargan distributions

Sargan distributions are a system of distributions of which the Laplace distribution is a core member. A th order Sargan distribution has density [3] [4]

for parameters . The Laplace distribution results for .

Statistical inference

Given independent and identically distributed samples , the maximum likelihood (MLE) estimator of is the sample median, [5]

The MLE estimator of is the mean absolute deviation from the median,[ citation needed ]

revealing a link between the Laplace distribution and least absolute deviations. A correction for small samples can be applied as follows:

(see: exponential distribution#Parameter estimation).

Occurrence and applications

The Laplacian distribution has been used in speech recognition to model priors on DFT coefficients [6] and in JPEG image compression to model AC coefficients [7] generated by a DCT.

Fitted Laplace distribution to maximum one-day rainfalls Laplace Surinam.png
Fitted Laplace distribution to maximum one-day rainfalls
The Laplace distribution, being a composite or double distribution, is applicable in situations where the lower values originate under different external conditions than the higher ones so that they follow a different pattern. [12]

Random variate generation

Given a random variable drawn from the uniform distribution in the interval , the random variable

has a Laplace distribution with parameters and . This follows from the inverse cumulative distribution function given above.

A variate can also be generated as the difference of two i.i.d. random variables. Equivalently, can also be generated as the logarithm of the ratio of two i.i.d. uniform random variables.

History

This distribution is often referred to as "Laplace's first law of errors". He published it in 1774, modeling the frequency of an error as an exponential function of its magnitude once its sign was disregarded. Laplace would later replace this model with his "second law of errors", based on the normal distribution, after the discovery of the central limit theorem. [13] [14]

Keynes published a paper in 1911 based on his earlier thesis wherein he showed that the Laplace distribution minimised the absolute deviation from the median. [15]

See also

Related Research Articles

<span class="mw-page-title-main">Normal distribution</span> Probability distribution

In statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable. The general form of its probability density function is

<span class="mw-page-title-main">Exponential distribution</span> Probability distribution

In probability theory and statistics, the exponential distribution or negative exponential distribution is the probability distribution of the distance between events in a Poisson point process, i.e., a process in which events occur continuously and independently at a constant average rate; the distance parameter could be any meaningful mono-dimensional measure of the process, such as time between production errors, or length along a roll of fabric in the weaving manufacturing process. It is a particular case of the gamma distribution. It is the continuous analogue of the geometric distribution, and it has the key property of being memoryless. In addition to being used for the analysis of Poisson point processes it is found in various other contexts.

<span class="mw-page-title-main">Chi-squared distribution</span> Probability distribution and special case of gamma distribution

In probability theory and statistics, the chi-squared distribution with degrees of freedom is the distribution of a sum of the squares of independent standard normal random variables. The chi-squared distribution is a special case of the gamma distribution and is one of the most widely used probability distributions in inferential statistics, notably in hypothesis testing and in construction of confidence intervals. This distribution is sometimes called the central chi-squared distribution, a special case of the more general noncentral chi-squared distribution.

<span class="mw-page-title-main">Weibull distribution</span> Continuous probability distribution

In probability theory and statistics, the Weibull distribution is a continuous probability distribution. It models a broad range of random variables, largely in the nature of a time to failure or time between events. Examples are maximum one-day rainfalls and the time a user spends on a web page.

In probability theory, a compound Poisson distribution is the probability distribution of the sum of a number of independent identically-distributed random variables, where the number of terms to be added is itself a Poisson-distributed variable. The result can be either a continuous or a discrete distribution.

Variational Bayesian methods are a family of techniques for approximating intractable integrals arising in Bayesian inference and machine learning. They are typically used in complex statistical models consisting of observed variables as well as unknown parameters and latent variables, with various sorts of relationships among the three types of random variables, as might be described by a graphical model. As typical in Bayesian inference, the parameters and latent variables are grouped together as "unobserved variables". Variational Bayesian methods are primarily used for two purposes:

  1. To provide an analytical approximation to the posterior probability of the unobserved variables, in order to do statistical inference over these variables.
  2. To derive a lower bound for the marginal likelihood of the observed data. This is typically used for performing model selection, the general idea being that a higher marginal likelihood for a given model indicates a better fit of the data by that model and hence a greater probability that the model in question was the one that generated the data.
<span class="mw-page-title-main">Lévy distribution</span> Probability distribution

In probability theory and statistics, the Lévy distribution, named after Paul Lévy, is a continuous probability distribution for a non-negative random variable. In spectroscopy, this distribution, with frequency as the dependent variable, is known as a van der Waals profile. It is a special case of the inverse-gamma distribution. It is a stable distribution.

<span class="mw-page-title-main">Kumaraswamy distribution</span>

In probability and statistics, the Kumaraswamy's double bounded distribution is a family of continuous probability distributions defined on the interval (0,1). It is similar to the beta distribution, but much simpler to use especially in simulation studies since its probability density function, cumulative distribution function and quantile functions can be expressed in closed form. This distribution was originally proposed by Poondi Kumaraswamy for variables that are lower and upper bounded with a zero-inflation. This was extended to inflations at both extremes [0,1] in later work with S. G. Fletcher.

<span class="mw-page-title-main">Noncentral chi-squared distribution</span> Noncentral generalization of the chi-squared distribution

In probability theory and statistics, the noncentral chi-squared distribution is a noncentral generalization of the chi-squared distribution. It often arises in the power analysis of statistical tests in which the null distribution is a chi-squared distribution; important examples of such tests are the likelihood-ratio tests.

<span class="mw-page-title-main">Inverse Gaussian distribution</span> Family of continuous probability distributions

In probability theory, the inverse Gaussian distribution is a two-parameter family of continuous probability distributions with support on (0,∞).

<span class="mw-page-title-main">Generalized Pareto distribution</span> Family of probability distributions often used to model tails or extreme values

In statistics, the generalized Pareto distribution (GPD) is a family of continuous probability distributions. It is often used to model the tails of another distribution. It is specified by three parameters: location , scale , and shape . Sometimes it is specified by only scale and shape and sometimes only by its shape parameter. Some references give the shape parameter as .

A ratio distribution is a probability distribution constructed as the distribution of the ratio of random variables having two other known distributions. Given two random variables X and Y, the distribution of the random variable Z that is formed as the ratio Z = X/Y is a ratio distribution.

<span class="mw-page-title-main">Fréchet distribution</span> Continuous probability distribution

The Fréchet distribution, also known as inverse Weibull distribution, is a special case of the generalized extreme value distribution. It has the cumulative distribution function

In probability and statistics, the Tweedie distributions are a family of probability distributions which include the purely continuous normal, gamma and inverse Gaussian distributions, the purely discrete scaled Poisson distribution, and the class of compound Poisson–gamma distributions which have positive mass at zero, but are otherwise continuous. Tweedie distributions are a special case of exponential dispersion models and are often used as distributions for generalized linear models.

In probability and statistics, the class of exponential dispersion models (EDM), also called exponential dispersion family (EDF), is a set of probability distributions that represents a generalisation of the natural exponential family. Exponential dispersion models play an important role in statistical theory, in particular in generalized linear models because they have a special structure which enables deductions to be made about appropriate statistical inference.

<span class="mw-page-title-main">Normal-inverse-gamma distribution</span>

In probability theory and statistics, the normal-inverse-gamma distribution is a four-parameter family of multivariate continuous probability distributions. It is the conjugate prior of a normal distribution with unknown mean and variance.

<span class="mw-page-title-main">Poisson distribution</span> Discrete probability distribution

In probability theory and statistics, the Poisson distribution is a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time if these events occur with a known constant mean rate and independently of the time since the last event. It can also be used for the number of events in other types of intervals than time, and in dimension greater than 1.

<i>q</i>-exponential distribution

The q-exponential distribution is a probability distribution arising from the maximization of the Tsallis entropy under appropriate constraints, including constraining the domain to be positive. It is one example of a Tsallis distribution. The q-exponential is a generalization of the exponential distribution in the same way that Tsallis entropy is a generalization of standard Boltzmann–Gibbs entropy or Shannon entropy. The exponential distribution is recovered as

<span class="mw-page-title-main">Asymmetric Laplace distribution</span> Continuous probability distribution

In probability theory and statistics, the asymmetric Laplace distribution (ALD) is a continuous probability distribution which is a generalization of the Laplace distribution. Just as the Laplace distribution consists of two exponential distributions of equal scale back-to-back about x = m, the asymmetric Laplace consists of two exponential distributions of unequal scale back to back about x = m, adjusted to assure continuity and normalization. The difference of two variates exponentially distributed with different means and rate parameters will be distributed according to the ALD. When the two rate parameters are equal, the difference will be distributed according to the Laplace distribution.

<span class="mw-page-title-main">Wrapped asymmetric Laplace distribution</span>

In probability theory and directional statistics, a wrapped asymmetric Laplace distribution is a wrapped probability distribution that results from the "wrapping" of the asymmetric Laplace distribution around the unit circle. For the symmetric case (asymmetry parameter κ = 1), the distribution becomes a wrapped Laplace distribution. The distribution of the ratio of two circular variates (Z) from two different wrapped exponential distributions will have a wrapped asymmetric Laplace distribution. These distributions find application in stochastic modelling of financial data.

References

  1. Norton, Matthew; Khokhlov, Valentyn; Uryasev, Stan (2019). "Calculating CVaR and bPOE for common probability distributions with application to portfolio optimization and density estimation" (PDF). Annals of Operations Research. 299 (1–2). Springer: 1281–1315. doi:10.1007/s10479-019-03373-1 . Retrieved 2023-02-27.
  2. 1 2 Kotz, Samuel; Kozubowski, Tomasz J.; Podgórski, Krzysztof (2001). The Laplace distribution and generalizations: a revisit with applications to Communications, Economics, Engineering and Finance. Birkhauser. pp. 23 (Proposition 2.2.2, Equation 2.2.8). ISBN   9780817641665.
  3. Everitt, B.S. (2002) The Cambridge Dictionary of Statistics, CUP. ISBN   0-521-81099-X
  4. Johnson, N.L., Kotz S., Balakrishnan, N. (1994) Continuous Univariate Distributions, Wiley. ISBN   0-471-58495-9. p. 60
  5. Robert M. Norton (May 1984). "The Double Exponential Distribution: Using Calculus to Find a Maximum Likelihood Estimator". The American Statistician . 38 (2). American Statistical Association: 135–136. doi:10.2307/2683252. JSTOR   2683252.
  6. Eltoft, T.; Taesu Kim; Te-Won Lee (2006). "On the multivariate Laplace distribution" (PDF). IEEE Signal Processing Letters. 13 (5): 300–303. doi:10.1109/LSP.2006.870353. S2CID   1011487. Archived from the original (PDF) on 2013-06-06. Retrieved 2012-07-04.
  7. Minguillon, J.; Pujol, J. (2001). "JPEG standard uniform quantization error modeling with applications to sequential and progressive operation modes" (PDF). Journal of Electronic Imaging. 10 (2): 475–485. doi:10.1117/1.1344592. hdl: 10609/6263 .
  8. CumFreq for probability distribution fitting
  9. Pardo, Scott (2020). Statistical Analysis of Empirical Data Methods for Applied Sciences. Springer. p. 58. ISBN   978-3-030-43327-7.
  10. Kou, S.G. (August 8, 2002). "A Jump-Diffusion Model for Option Pricing". Management Science. 48 (8): 1086–1101. doi:10.1287/mnsc.48.8.1086.166. JSTOR   822677 . Retrieved 2022-03-01.
  11. Chen, Jian (2018). General Equilibrium Option Pricing Method: Theoretical and Empirical Study. Springer. p. 70. ISBN   9789811074288.
  12. A collection of composite distributions
  13. Laplace, P-S. (1774). Mémoire sur la probabilité des causes par les évènements. Mémoires de l’Academie Royale des Sciences Presentés par Divers Savan, 6, 621–656
  14. Wilson, Edwin Bidwell (1923). "First and Second Laws of Error". Journal of the American Statistical Association. 18 (143). Informa UK Limited: 841–851. doi:10.1080/01621459.1923.10502116. ISSN   0162-1459.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  15. Keynes, J. M. (1911). "The Principal Averages and the Laws of Error which Lead to Them". Journal of the Royal Statistical Society. 74 (3). JSTOR: 322–331. doi:10.2307/2340444. ISSN   0952-8385. JSTOR   2340444.