Beta negative binomial distribution

Last updated
Beta Negative Binomial
Parameters shape (real)
shape (real)
— number of successes until the experiment is stopped (integer but can be extended to real)
Support
PMF
Mean
Variance
Skewness
MGF does not exist
CF where is the Pochhammer symbol and is the hypergeometric function.
PGF

In probability theory, a beta negative binomial distribution is the probability distribution of a discrete random variable   equal to the number of failures needed to get successes in a sequence of independent Bernoulli trials. The probability of success on each trial stays constant within any given experiment but varies across different experiments following a beta distribution. Thus the distribution is a compound probability distribution.

Contents

This distribution has also been called both the inverse Markov-Pólya distribution and the generalized Waring distribution [1] or simply abbreviated as the BNB distribution. A shifted form of the distribution has been called the beta-Pascal distribution. [1]

If parameters of the beta distribution are and , and if

where

then the marginal distribution of (i.e. the posterior predictive distribution) is a beta negative binomial distribution:

In the above, is the negative binomial distribution and is the beta distribution.

Definition and derivation

Denoting the densities of the negative binomial and beta distributions respectively, we obtain the PMF of the BNB distribution by marginalization:

Noting that the integral evaluates to:

we can arrive at the following formulas by relatively simple manipulations.

If is an integer, then the PMF can be written in terms of the beta function,:

.

More generally, the PMF can be written

or

.

PMF expressed with Gamma

Using the properties of the Beta function, the PMF with integer can be rewritten as:

.

More generally, the PMF can be written as

.

PMF expressed with the rising Pochammer symbol

The PMF is often also presented in terms of the Pochammer symbol for integer

Properties

Factorial Moments

The k-th factorial moment of a beta negative binomial random variable X is defined for and in this case is equal to

Non-identifiable

The beta negative binomial is non-identifiable which can be seen easily by simply swapping and in the above density or characteristic function and noting that it is unchanged. Thus estimation demands that a constraint be placed on , or both.

Relation to other distributions

The beta negative binomial distribution contains the beta geometric distribution as a special case when either or . It can therefore approximate the geometric distribution arbitrarily well. It also approximates the negative binomial distribution arbitrary well for large . It can therefore approximate the Poisson distribution arbitrarily well for large , and .

Heavy tailed

By Stirling's approximation to the beta function, it can be easily shown that for large

which implies that the beta negative binomial distribution is heavy tailed and that moments less than or equal to do not exist.

Beta geometric distribution

The beta geometric distribution is an important special case of the beta negative binomial distribution occurring for . In this case the pmf simplifies to

.

This distribution is used in some Buy Till you Die (BTYD) models.

Further, when the beta geometric reduces to the Yule–Simon distribution. However, it is more common to define the Yule-Simon distribution in terms of a shifted version of the beta geometric. In particular, if then .

Beta negative binomial as a Pólya urn model

In the case when the 3 parameters and are positive integers, the Beta negative binomial can also be motivated by an urn model - or more specifically a basic Pólya urn model. Consider an urn initially containing red balls (the stopping color) and blue balls. At each step of the model, a ball is drawn at random from the urn and replaced, along with one additional ball of the same color. The process is repeated over and over, until red colored balls are drawn. The random variable of observed draws of blue balls are distributed according to a . Note, at the end of the experiment, the urn always contains the fixed number of red balls while containing the random number blue balls.

By the non-identifiability property, can be equivalently generated with the urn initially containing red balls (the stopping color) and blue balls and stopping when red balls are observed.


See also

Notes

  1. 1 2 Johnson et al. (1993)

Related Research Articles

<span class="mw-page-title-main">Binomial distribution</span> Probability distribution

In probability theory and statistics, the binomial distribution with parameters n and p is the discrete probability distribution of the number of successes in a sequence of n independent experiments, each asking a yes–no question, and each with its own Boolean-valued outcome: success or failure. A single success/failure experiment is also called a Bernoulli trial or Bernoulli experiment, and a sequence of outcomes is called a Bernoulli process; for a single trial, i.e., n = 1, the binomial distribution is a Bernoulli distribution. The binomial distribution is the basis for the binomial test of statistical significance.

<span class="mw-page-title-main">Binomial coefficient</span> Number of subsets of a given size

In mathematics, the binomial coefficients are the positive integers that occur as coefficients in the binomial theorem. Commonly, a binomial coefficient is indexed by a pair of integers nk ≥ 0 and is written It is the coefficient of the xk term in the polynomial expansion of the binomial power (1 + x)n; this coefficient can be computed by the multiplicative formula

<span class="mw-page-title-main">Negative binomial distribution</span> Probability distribution

In probability theory and statistics, the negative binomial distribution is a discrete probability distribution that models the number of failures in a sequence of independent and identically distributed Bernoulli trials before a specified (non-random) number of successes occurs. For example, we can define rolling a 6 on some dice as a success, and rolling any other number as a failure, and ask how many failure rolls will occur before we see the third success. In such a case, the probability distribution of the number of failures that appear will be a negative binomial distribution.

<span class="mw-page-title-main">Beta distribution</span> Probability distribution

In probability theory and statistics, the beta distribution is a family of continuous probability distributions defined on the interval [0, 1] or in terms of two positive parameters, denoted by alpha (α) and beta (β), that appear as exponents of the variable and its complement to 1, respectively, and control the shape of the distribution.

<span class="mw-page-title-main">Gamma distribution</span> Probability distribution

In probability theory and statistics, the gamma distribution is a versatile two-parameter family of continuous probability distributions. The exponential distribution, Erlang distribution, and chi-squared distribution are special cases of the gamma distribution. There are two equivalent parameterizations in common use:

  1. With a shape parameter k and a scale parameter θ
  2. With a shape parameter and an inverse scale parameter , called a rate parameter.
<span class="mw-page-title-main">Beta function</span> Mathematical function

In mathematics, the beta function, also called the Euler integral of the first kind, is a special function that is closely related to the gamma function and to binomial coefficients. It is defined by the integral

<span class="mw-page-title-main">Gumbel distribution</span> Particular case of the generalized extreme value distribution

In probability theory and statistics, the Gumbel distribution is used to model the distribution of the maximum of a number of samples of various distributions.

In Bayesian probability theory, if, given a likelihood function , the posterior distribution is in the same probability distribution family as the prior probability distribution , the prior and posterior are then called conjugate distributions with respect to that likelihood function and the prior is called a conjugate prior for the likelihood function .

<span class="mw-page-title-main">Dirichlet distribution</span> Probability distribution

In probability and statistics, the Dirichlet distribution, often denoted , is a family of continuous multivariate probability distributions parameterized by a vector of positive reals. It is a multivariate generalization of the beta distribution, hence its alternative name of multivariate beta distribution (MBD). Dirichlet distributions are commonly used as prior distributions in Bayesian statistics, and in fact, the Dirichlet distribution is the conjugate prior of the categorical distribution and multinomial distribution.

<span class="mw-page-title-main">Yule–Simon distribution</span> Discrete probability distribution

In probability and statistics, the Yule–Simon distribution is a discrete probability distribution named after Udny Yule and Herbert A. Simon. Simon originally called it the Yule distribution.

<span class="mw-page-title-main">Inverse-gamma distribution</span> Two-parameter family of continuous probability distributions

In probability theory and statistics, the inverse gamma distribution is a two-parameter family of continuous probability distributions on the positive real line, which is the distribution of the reciprocal of a variable distributed according to the gamma distribution.

<span class="mw-page-title-main">Beta prime distribution</span> Probability distribution

In probability theory and statistics, the beta prime distribution is an absolutely continuous probability distribution. If has a beta distribution, then the odds has a beta prime distribution.

<span class="mw-page-title-main">Beta-binomial distribution</span> Discrete probability distribution

In probability theory and statistics, the beta-binomial distribution is a family of discrete probability distributions on a finite support of non-negative integers arising when the probability of success in each of a fixed or known number of Bernoulli trials is either unknown or random. The beta-binomial distribution is the binomial distribution in which the probability of success at each of n trials is not fixed but randomly drawn from a beta distribution. It is frequently used in Bayesian statistics, empirical Bayes methods and classical statistics to capture overdispersion in binomial type distributed data.

Expected shortfall (ES) is a risk measure—a concept used in the field of financial risk measurement to evaluate the market risk or credit risk of a portfolio. The "expected shortfall at q% level" is the expected return on the portfolio in the worst of cases. ES is an alternative to value at risk that is more sensitive to the shape of the tail of the loss distribution.

In probability theory and statistics, the Dirichlet-multinomial distribution is a family of discrete multivariate probability distributions on a finite support of non-negative integers. It is also called the Dirichlet compound multinomial distribution (DCM) or multivariate Pólya distribution. It is a compound probability distribution, where a probability vector p is drawn from a Dirichlet distribution with parameter vector , and an observation drawn from a multinomial distribution with probability vector p and number of trials n. The Dirichlet parameter vector captures the prior belief about the situation and can be seen as a pseudocount: observations of each outcome that occur before the actual data is collected. The compounding corresponds to a Pólya urn scheme. It is frequently encountered in Bayesian statistics, machine learning, empirical Bayes methods and classical statistics as an overdispersed multinomial distribution.

A ratio distribution is a probability distribution constructed as the distribution of the ratio of random variables having two other known distributions. Given two random variables X and Y, the distribution of the random variable Z that is formed as the ratio Z = X/Y is a ratio distribution.

In statistics, the generalized Dirichlet distribution (GD) is a generalization of the Dirichlet distribution with a more general covariance structure and almost twice the number of parameters. Random vectors with a GD distribution are completely neutral.

In statistics, a Pólya urn model, named after George Pólya, is a family of urn models that can be used to interpret many commonly used statistical models.

In probability theory and statistics, the Dirichlet negative multinomial distribution is a multivariate distribution on the non-negative integers. It is a multivariate extension of the beta negative binomial distribution. It is also a generalization of the negative multinomial distribution (NM(k, p)) allowing for heterogeneity or overdispersion to the probability vector. It is used in quantitative marketing research to flexibly model the number of household transactions across multiple brands.

References