Continuous uniform distribution

Last updated
Continuous uniform
Probability density function
Uniform Distribution PDF SVG.svg
Using maximum convention
Cumulative distribution function
Uniform cdf.svg
Notation
Parameters
Support
PDF
CDF
Mean
Median
Mode
Variance
MAD
Skewness
Excess kurtosis
Entropy
MGF
CF

In probability theory and statistics, the continuous uniform distributions or rectangular distributions are a family of symmetric probability distributions. Such a distribution describes an experiment where there is an arbitrary outcome that lies between certain bounds. [1] The bounds are defined by the parameters, and which are the minimum and maximum values. The interval can either be closed (i.e. ) or open (i.e. ). [2] Therefore, the distribution is often abbreviated where stands for uniform distribution. [1] The difference between the bounds defines the interval length; all intervals of the same length on the distribution's support are equally probable. It is the maximum entropy probability distribution for a random variable under no constraint other than that it is contained in the distribution's support. [3]

Contents

Definitions

Probability density function

The probability density function of the continuous uniform distribution is

The values of at the two boundaries and are usually unimportant, because they do not alter the value of over any interval nor of nor of any higher moment. Sometimes they are chosen to be zero, and sometimes chosen to be The latter is appropriate in the context of estimation by the method of maximum likelihood. In the context of Fourier analysis, one may take the value of or to be because then the inverse transform of many integral transforms of this uniform function will yield back the function itself, rather than a function which is equal "almost everywhere", i.e. except on a set of points with zero measure. Also, it is consistent with the sign function, which has no such ambiguity.

Any probability density function integrates to so the probability density function of the continuous uniform distribution is graphically portrayed as a rectangle where is the base length and is the height. As the base length increases, the height (the density at any particular value within the distribution boundaries) decreases. [4]

In terms of mean and variance the probability density function of the continuous uniform distribution is

Cumulative distribution function

The cumulative distribution function of the continuous uniform distribution is:

Its inverse is:

In terms of mean and variance the cumulative distribution function of the continuous uniform distribution is:

its inverse is:

Example 1. Using the continuous uniform distribution function

For a random variable find

In a graphical representation of the continuous uniform distribution function the area under the curve within the specified bounds, displaying the probability, is a rectangle. For the specific example above, the base would be and the height would be [5]

Example 2. Using the continuous uniform distribution function (conditional)

For a random variable find

The example above is a conditional probability case for the continuous uniform distribution: given that is true, what is the probability that Conditional probability changes the sample space, so a new interval length has to be calculated, where and [5] The graphical representation would still follow Example 1, where the area under the curve within the specified bounds displays the probability; the base of the rectangle would be and the height would be [5]

Generating functions

Moment-generating function

The moment-generating function of the continuous uniform distribution is: [6]

from which we may calculate the raw moments

For a random variable following the continuous uniform distribution, the expected value is and the variance is

For the special case the probability density function of the continuous uniform distribution is:

the moment-generating function reduces to the simple form:

Cumulant-generating function

For the -th cumulant of the continuous uniform distribution on the interval is where is the -th Bernoulli number. [7]

Standard uniform distribution

The continuous uniform distribution with parameters and i.e. is called the standard uniform distribution.

One interesting property of the standard uniform distribution is that if has a standard uniform distribution, then so does This property can be used for generating antithetic variates, among other things. In other words, this property is known as the inversion method where the continuous standard uniform distribution can be used to generate random numbers for any other continuous distribution. [4] If is a uniform random number with standard uniform distribution, i.e. with then generates a random number from any continuous distribution with the specified cumulative distribution function [4]

Relationship to other functions

As long as the same conventions are followed at the transition points, the probability density function of the continuous uniform distribution may also be expressed in terms of the Heaviside step function as:

or in terms of the rectangle function as:

There is no ambiguity at the transition point of the sign function. Using the half-maximum convention at the transition points, the continuous uniform distribution may be expressed in terms of the sign function as:

Properties

Moments

The mean (first raw moment) of the continuous uniform distribution is:

The second raw moment of this distribution is:

In general, the -th raw moment of this distribution is:

The variance (second central moment) of this distribution is:

Order statistics

Let be an i.i.d. sample from and let be the -th order statistic from this sample.

has a beta distribution, with parameters and

The expected value is:

This fact is useful when making Q–Q plots.

The variance is:

Uniformity

The probability that a continuously uniformly distributed random variable falls within any interval of fixed length is independent of the location of the interval itself (but it is dependent on the interval size ), so long as the interval is contained in the distribution's support.

Indeed, if and if is a subinterval of with fixed then:

which is independent of This fact motivates the distribution's name.

Uniform distribution on more general sets

The uniform distribution can be generalized to sets more general than intervals.

Formally, let be a Borel set of positive, finite Lebesgue measure i.e. The uniform distribution on can be specified by defining the probability density function to be zero outside and constantly equal to on

An interesting special case is when the set S is a simplex . It is possible to obtain a uniform distribution on the standard n-vertex simplex in the following way. [8] :Thm.4.1take n independent random variables with the same exponential distribution; denote them by X1,...,Xn; and let Yi := Xi / (sumi Xi). Then, the vector Y1,...,Yn is uniformly distributed on the simplex.

Statistical inference

Estimation of parameters

Estimation of maximum

Minimum-variance unbiased estimator

Given a uniform distribution on with unknown the minimum-variance unbiased estimator (UMVUE) for the maximum is:

where is the sample maximum and is the sample size, sampling without replacement (though this distinction almost surely makes no difference for a continuous distribution). This follows for the same reasons as estimation for the discrete distribution, and can be seen as a very simple case of maximum spacing estimation. This problem is commonly known as the German tank problem, due to application of maximum estimation to estimates of German tank production during World War II.

Method of moment estimator

The method of moments estimator is:

where is the sample mean.

Maximum likelihood estimator

The maximum likelihood estimator is:

where is the sample maximum, also denoted as the maximum order statistic of the sample.

Estimation of minimum

Given a uniform distribution on with unknown a, the maximum likelihood estimator for a is:

,

the sample minimum. [9]

Estimation of midpoint

The midpoint of the distribution, is both the mean and the median of the uniform distribution. Although both the sample mean and the sample median are unbiased estimators of the midpoint, neither is as efficient as the sample mid-range, i.e. the arithmetic mean of the sample maximum and the sample minimum, which is the UMVU estimator of the midpoint (and also the maximum likelihood estimate).

Confidence interval

For the maximum

Let be a sample from where is the maximum value in the population. Then has the Lebesgue-Borel-density [10]

where is the indicator function of

The confidence interval given before is mathematically incorrect, as

cannot be solved for without knowledge of . However, one can solve

for for any unknown but valid

one then chooses the smallest possible satisfying the condition above. Note that the interval length depends upon the random variable

Occurrence and applications

The probabilities for uniform distribution function are simple to calculate due to the simplicity of the function form. [2] Therefore, there are various applications that this distribution can be used for as shown below: hypothesis testing situations, random sampling cases, finance, etc. Furthermore, generally, experiments of physical origin follow a uniform distribution (e.g. emission of radioactive particles). [1] However, it is important to note that in any application, there is the unchanging assumption that the probability of falling in an interval of fixed length is constant. [2]

Economics example for uniform distribution

In the field of economics, usually demand and replenishment may not follow the expected normal distribution. As a result, other distribution models are used to better predict probabilities and trends such as Bernoulli process. [11] But according to Wanke (2008), in the particular case of investigating lead-time for inventory management at the beginning of the life cycle when a completely new product is being analyzed, the uniform distribution proves to be more useful. [11] In this situation, other distribution may not be viable since there is no existing data on the new product or that the demand history is unavailable so there isn't really an appropriate or known distribution. [11] The uniform distribution would be ideal in this situation since the random variable of lead-time (related to demand) is unknown for the new product but the results are likely to range between a plausible range of two values. [11] The lead-time would thus represent the random variable. From the uniform distribution model, other factors related to lead-time were able to be calculated such as cycle service level and shortage per cycle. It was also noted that the uniform distribution was also used due to the simplicity of the calculations. [11]

Sampling from an arbitrary distribution

The uniform distribution is useful for sampling from arbitrary distributions. A general method is the inverse transform sampling method, which uses the cumulative distribution function (CDF) of the target random variable. This method is very useful in theoretical work. Since simulations using this method require inverting the CDF of the target variable, alternative methods have been devised for the cases where the CDF is not known in closed form. One such method is rejection sampling.

The normal distribution is an important example where the inverse transform method is not efficient. However, there is an exact method, the Box–Muller transformation, which uses the inverse transform to convert two independent uniform random variables into two independent normally distributed random variables.

Quantization error

In analog-to-digital conversion, a quantization error occurs. This error is either due to rounding or truncation. When the original signal is much larger than one least significant bit (LSB), the quantization error is not significantly correlated with the signal, and has an approximately uniform distribution. The RMS error therefore follows from the variance of this distribution.

Random variate generation

There are many applications in which it is useful to run simulation experiments. Many programming languages come with implementations to generate pseudo-random numbers which are effectively distributed according to the standard uniform distribution.

On the other hand, the uniformly distributed numbers are often used as the basis for non-uniform random variate generation.

If is a value sampled from the standard uniform distribution, then the value follows the uniform distribution parameterized by and as described above.

History

While the historical origins in the conception of uniform distribution are inconclusive, it is speculated that the term "uniform" arose from the concept of equiprobability in dice games (note that the dice games would have discrete and not continuous uniform sample space). Equiprobability was mentioned in Gerolamo Cardano's Liber de Ludo Aleae, a manual written in 16th century and detailed on advanced probability calculus in relation to dice. [12]

See also

Related Research Articles

<span class="mw-page-title-main">Cumulative distribution function</span> Probability that random variable X is less than or equal to x

In probability theory and statistics, the cumulative distribution function (CDF) of a real-valued random variable , or just distribution function of , evaluated at , is the probability that will take a value less than or equal to .

<span class="mw-page-title-main">Cauchy distribution</span> Probability distribution

The Cauchy distribution, named after Augustin-Louis Cauchy, is a continuous probability distribution. It is also known, especially among physicists, as the Lorentz distribution, Cauchy–Lorentz distribution, Lorentz(ian) function, or Breit–Wigner distribution. The Cauchy distribution is the distribution of the x-intercept of a ray issuing from with a uniformly distributed angle. It is also the distribution of the ratio of two independent normally distributed random variables with mean zero.

<span class="mw-page-title-main">Probability distribution</span> Mathematical function for the probability a given outcome occurs in an experiment

In probability theory and statistics, a probability distribution is the mathematical function that gives the probabilities of occurrence of possible outcomes for an experiment. It is a mathematical description of a random phenomenon in terms of its sample space and the probabilities of events.

<span class="mw-page-title-main">Random variable</span> Variable representing a random phenomenon

A random variable is a mathematical formalization of a quantity or object which depends on random events. The term 'random variable' in its mathematical definition refers to neither randomness nor variability but instead is a mathematical function in which

<span class="mw-page-title-main">Pareto distribution</span> Probability distribution

The Pareto distribution, named after the Italian civil engineer, economist, and sociologist Vilfredo Pareto, is a power-law probability distribution that is used in description of social, quality control, scientific, geophysical, actuarial, and many other types of observable phenomena; the principle originally applied to describing the distribution of wealth in a society, fitting the trend that a large portion of wealth is held by a small fraction of the population. The Pareto principle or "80-20 rule" stating that 80% of outcomes are due to 20% of causes was named in honour of Pareto, but the concepts are distinct, and only Pareto distributions with shape value of log45 ≈ 1.16 precisely reflect it. Empirical observation has shown that this 80-20 distribution fits a wide range of cases, including natural phenomena and human activities.

<span class="mw-page-title-main">Wiener process</span> Stochastic process generalizing Brownian motion

In mathematics, the Wiener process is a real-valued continuous-time stochastic process named in honor of American mathematician Norbert Wiener for his investigations on the mathematical properties of the one-dimensional Brownian motion. It is often also called Brownian motion due to its historical connection with the physical process of the same name originally observed by Scottish botanist Robert Brown. It is one of the best known Lévy processes and occurs frequently in pure and applied mathematics, economics, quantitative finance, evolutionary biology, and physics.

In probability theory, Chebyshev's inequality provides an upper bound on the probability of deviation of a random variable from its mean. More specifically, the probability that a random variable deviates from its mean by more than is at most , where is any positive constant and is the standard deviation.

<span class="mw-page-title-main">Law of large numbers</span> Averages of repeated trials converge to the expected value

In probability theory, the law of large numbers (LLN) is a mathematical law that states that the average of the results obtained from a large number of independent random samples converges to the true value, if it exists. More formally, the LLN states that given a sample of independent and identically distributed values, the sample mean converges to the true mean.

<span class="mw-page-title-main">Order statistic</span> Kth smallest value in a statistical sample

In statistics, the kth order statistic of a statistical sample is equal to its kth-smallest value. Together with rank statistics, order statistics are among the most fundamental tools in non-parametric statistics and inference.

<span class="mw-page-title-main">Rayleigh distribution</span> Probability distribution

In probability theory and statistics, the Rayleigh distribution is a continuous probability distribution for nonnegative-valued random variables. Up to rescaling, it coincides with the chi distribution with two degrees of freedom. The distribution is named after Lord Rayleigh.

In numerical analysis and computational statistics, rejection sampling is a basic technique used to generate observations from a distribution. It is also commonly called the acceptance-rejection method or "accept-reject algorithm" and is a type of exact simulation method. The method works for any distribution in with a density.

In probability theory and statistics, the generalized extreme value (GEV) distribution is a family of continuous probability distributions developed within extreme value theory to combine the Gumbel, Fréchet and Weibull families also known as type I, II and III extreme value distributions. By the extreme value theorem the GEV distribution is the only possible limit distribution of properly normalized maxima of a sequence of independent and identically distributed random variables. that a limit distribution needs to exist, which requires regularity conditions on the tail of the distribution. Despite this, the GEV distribution is often used as an approximation to model the maxima of long (finite) sequences of random variables.

<span class="mw-page-title-main">Discrete uniform distribution</span> Probability distribution on equally likely outcomes

In probability theory and statistics, the discrete uniform distribution is a symmetric probability distribution wherein each of some finite whole number n of outcome values are equally likely to be observed. Thus every one of the n outcome values has equal probability 1/n. Intuitively, a discrete uniform distribution is "a known, finite number of outcomes all equally likely to happen."

Differential entropy is a concept in information theory that began as an attempt by Claude Shannon to extend the idea of (Shannon) entropy of a random variable, to continuous probability distributions. Unfortunately, Shannon did not derive this formula, and rather just assumed it was the correct continuous analogue of discrete entropy, but it is not. The actual continuous version of discrete entropy is the limiting density of discrete points (LDDP). Differential entropy is commonly encountered in the literature, but it is a limiting case of the LDDP, and one that loses its fundamental association with discrete entropy.

A ratio distribution is a probability distribution constructed as the distribution of the ratio of random variables having two other known distributions. Given two random variables X and Y, the distribution of the random variable Z that is formed as the ratio Z = X/Y is a ratio distribution.

<span class="mw-page-title-main">Truncated normal distribution</span> Type of probability distribution

In probability and statistics, the truncated normal distribution is the probability distribution derived from that of a normally distributed random variable by bounding the random variable from either below or above. The truncated normal distribution has wide applications in statistics and econometrics.

<span class="mw-page-title-main">Maximum spacing estimation</span> Method of estimating a statistical models parameters

In statistics, maximum spacing estimation (MSE or MSP), or maximum product of spacing estimation (MPS), is a method for estimating the parameters of a univariate statistical model. The method requires maximization of the geometric mean of spacings in the data, which are the differences between the values of the cumulative distribution function at neighbouring data points.

<span class="mw-page-title-main">Poisson distribution</span> Discrete probability distribution

In probability theory and statistics, the Poisson distribution is a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time if these events occur with a known constant mean rate and independently of the time since the last event. It can also be used for the number of events in other types of intervals than time, and in dimension greater than 1.

A product distribution is a probability distribution constructed as the distribution of the product of random variables having two other known distributions. Given two statistically independent random variables X and Y, the distribution of the random variable Z that is formed as the product is a product distribution.

<span class="mw-page-title-main">Bates distribution</span> Propability distribution

In probability and business statistics, the Bates distribution, named after Grace Bates, is a probability distribution of the mean of a number of statistically independent uniformly distributed random variables on the unit interval. This distribution is related to the uniform, the triangular, and the normal Gaussian distribution, and has applications in broadcast engineering for signal enhancement.

References

  1. 1 2 3 Dekking, Michel (2005). A modern introduction to probability and statistics : understanding why and how . London, UK: Springer. pp.  60–61. ISBN   978-1-85233-896-1.
  2. 1 2 3 Walpole, Ronald; et al. (2012). Probability & Statistics for Engineers and Scientists. Boston, USA: Prentice Hall. pp. 171–172. ISBN   978-0-321-62911-1.
  3. Park, Sung Y.; Bera, Anil K. (2009). "Maximum entropy autoregressive conditional heteroskedasticity model". Journal of Econometrics . 150 (2): 219–230. CiteSeerX   10.1.1.511.9750 . doi:10.1016/j.jeconom.2008.12.014.
  4. 1 2 3 "Uniform Distribution (Continuous)". MathWorks. 2019. Retrieved November 22, 2019.
  5. 1 2 3 Illowsky, Barbara; et al. (2013). Introductory Statistics. Rice University, Houston, Texas, USA: OpenStax College. pp.  296–304. ISBN   978-1-938168-20-8.
  6. Casella & Berger 2001 , p. 626
  7. Wichura, Michael J. (January 11, 2001). "Cumulants" (PDF). Stat 304 Handouts. University of Chicago.
  8. Non-Uniform Random Variate Generation. doi:10.1007/978-1-4613-8643-8.

  9. .
    Since we have the factor is maximized by biggest possible a, which is limited in by . Therefore is the maximum of .
  10. Nechval KN, Nechval NA, Vasermanis EK, Makeev VY (2002) Constructing shortest-length confidence intervals. Transport and Telecommunication 3 (1) 95-103
  11. 1 2 3 4 5 Wanke, Peter (2008). "The uniform distribution as a first practical approach to new product inventory management". International Journal of Production Economics. 114 (2): 811–819. doi:10.1016/j.ijpe.2008.04.004 via Research Gate.
  12. Bellhouse, David (May 2005). "Decoding Cardano's Liber de Ludo". Historia Mathematica. 32: 180–202. doi: 10.1016/j.hm.2004.04.001 .

Further reading