Exponential family

Last updated

In probability and statistics, an exponential family is a parametric set of probability distributions of a certain form, specified below. This special form is chosen for mathematical convenience, including the enabling of the user to calculate expectations, covariances using differentiation based on some useful algebraic properties, as well as for generality, as exponential families are in a sense very natural sets of distributions to consider. The term exponential class is sometimes used in place of "exponential family", [1] or the older term Koopman–Darmois family. Sometimes loosely referred to as "the" exponential family, this class of distributions is distinct because they all possess a variety of desirable properties, most importantly the existence of a sufficient statistic.

Contents

The concept of exponential families is credited to [2] E. J. G. Pitman, [3] G. Darmois, [4] and B. O. Koopman [5] in 19351936. Exponential families of distributions provide a general framework for selecting a possible alternative parameterisation of a parametric family of distributions, in terms of natural parameters, and for defining useful sample statistics, called the natural sufficient statistics of the family.

Nomenclature difficulty

The terms "distribution" and "family" are often used loosely: Specifically, an exponential family is a set of distributions, where the specific distribution varies with the parameter; [lower-alpha 1] however, a parametric family of distributions is often referred to as "a distribution" (like "the normal distribution", meaning "the family of normal distributions"), and the set of all exponential families is sometimes loosely referred to as "the" exponential family.

Definition

Most of the commonly used distributions form an exponential family or subset of an exponential family, listed in the subsection below. The subsections following it are a sequence of increasingly more general mathematical definitions of an exponential family. A casual reader may wish to restrict attention to the first and simplest definition, which corresponds to a single-parameter family of discrete or continuous probability distributions.

Examples of exponential family distributions

Exponential families include many of the most common distributions. Among many others, exponential families includes the following: [6]

A number of common distributions are exponential families, but only when certain parameters are fixed and known. For example:

Note that in each case, the parameters which must be fixed are those that set a limit on the range of values that can possibly be observed.

Examples of common distributions that are not exponential families are Student's t, most mixture distributions, and even the family of uniform distributions when the bounds are not fixed. See the section below on examples for more discussion.

Scalar parameter

The value of is called the parameter of the family.

A single-parameter exponential family is a set of probability distributions whose probability density function (or probability mass function, for the case of a discrete distribution) can be expressed in the form

where and are known functions. The function must be non-negative.

An alternative, equivalent form often given is

or equivalently

Note that and

Support must be independent of θ

Importantly, the support of (all the possible values for which is greater than ) is required to not depend on [7] This requirement can be used to exclude a parametric family distribution from being an exponential family.

For example: The Pareto distribution has a pdf which is defined for (the minimum value, being the scale parameter) and its support, therefore, has a lower limit of Since the support of is dependent on the value of the parameter, the family of Pareto distributions does not form an exponential family of distributions (at least when is unknown).

Another example: Bernoulli-type distributions – binomial, negative binomial, geometric distribution, and similar – can only be included in the exponential class if the number of Bernoulli trials, is treated as a fixed constant – excluded from the free parameter(s) – since the allowed number of trials sets the limits for the number of "successes" or "failures" that can be observed in a set of trials.

Vector valued x and θ

Often is a vector of measurements, in which case may be a function from the space of possible values of to the real numbers.

More generally, and can each be vector-valued such that is real-valued. However, see the discussion below on vector parameters, regarding the curved exponential family.

Canonical formulation

If then the exponential family is said to be in canonical form . By defining a transformed parameter it is always possible to convert an exponential family to canonical form. The canonical form is non-unique, since can be multiplied by any nonzero constant, provided that is multiplied by that constant's reciprocal, or a constant c can be added to and multiplied by to offset it. In the special case that and then the family is called a natural exponential family .

Even when is a scalar, and there is only a single parameter, the functions and can still be vectors, as described below.

The function or equivalently is automatically determined once the other functions have been chosen, since it must assume a form that causes the distribution to be normalized (sum or integrate to one over the entire domain). Furthermore, both of these functions can always be written as functions of even when is not a one-to-one function, i.e. two or more different values of map to the same value of and hence cannot be inverted. In such a case, all values of mapping to the same will also have the same value for and

Factorization of the variables involved

What is important to note, and what characterizes all exponential family variants, is that the parameter(s) and the observation variable(s) must factorize (can be separated into products each of which involves only one type of variable), either directly or within either part (the base or exponent) of an exponentiation operation. Generally, this means that all of the factors constituting the density or mass function must be of one of the following forms:

where and are arbitrary functions of the observed statistical variable; and are arbitrary functions of the fixed parameters defining the shape of the distribution; and is any arbitrary constant expression (i.e. a number or an expression that does not change with either or ).

There are further restrictions on how many such factors can occur. For example, the two expressions:

are the same, i.e. a product of two "allowed" factors. However, when rewritten into the factorized form,

it can be seen that it cannot be expressed in the required form. (However, a form of this sort is a member of a curved exponential family, which allows multiple factorized terms in the exponent.[ citation needed ])

To see why an expression of the form

qualifies,

and hence factorizes inside of the exponent. Similarly,

and again factorizes inside of the exponent.

A factor consisting of a sum where both types of variables are involved (e.g. a factor of the form ) cannot be factorized in this fashion (except in some cases where occurring directly in an exponent); this is why, for example, the Cauchy distribution and Student's t distribution are not exponential families.

Vector parameter

The definition in terms of one real-number parameter can be extended to one real-vector parameter

A family of distributions is said to belong to a vector exponential family if the probability density function (or probability mass function, for discrete distributions) can be written as

or in a more compact form,

This form writes the sum as a dot product of vector-valued functions and .

An alternative, equivalent form often seen is

As in the scalar valued case, the exponential family is said to be in canonical form if

A vector exponential family is said to be curved if the dimension of

is less than the dimension of the vector

That is, if the dimension, d, of the parameter vector is less than the number of functions, s, of the parameter vector in the above representation of the probability density function. Most common distributions in the exponential family are not curved, and many algorithms designed to work with any exponential family implicitly or explicitly assume that the distribution is not curved.

Just as in the case of a scalar-valued parameter, the function or equivalently is automatically determined by the normalization constraint, once the other functions have been chosen. Even if is not one-to-one, functions and can be defined by requiring that the distribution is normalized for each value of the natural parameter . This yields the canonical form

or equivalently

The above forms may sometimes be seen with in place of . These are exactly equivalent formulations, merely using different notation for the dot product.

Vector parameter, vector variable

The vector-parameter form over a single scalar-valued random variable can be trivially expanded to cover a joint distribution over a vector of random variables. The resulting distribution is simply the same as the above distribution for a scalar-valued random variable with each occurrence of the scalar x replaced by the vector

The dimensions k of the random variable need not match the dimension d of the parameter vector, nor (in the case of a curved exponential function) the dimension s of the natural parameter and sufficient statistic T(x) .

The distribution in this case is written as

Or more compactly as

Or alternatively as

Measure-theoretic formulation

We use cumulative distribution functions (CDF) in order to encompass both discrete and continuous distributions.

Suppose H is a non-decreasing function of a real variable. Then Lebesgue–Stieltjes integrals with respect to are integrals with respect to the reference measure of the exponential family generated by H .

Any member of that exponential family has cumulative distribution function

H(x) is a Lebesgue–Stieltjes integrator for the reference measure. When the reference measure is finite, it can be normalized and H is actually the cumulative distribution function of a probability distribution. If F is absolutely continuous with a density with respect to a reference measure (typically Lebesgue measure), one can write . In this case, H is also absolutely continuous and can be written so the formulas reduce to that of the previous paragraphs. If F is discrete, then H is a step function (with steps on the support of F).

Alternatively, we can write the probability measure directly as

for some reference measure .

Interpretation

In the definitions above, the functions T(x), η(θ), and A(η) were arbitrary. However, these functions have important interpretations in the resulting probability distribution.

The function A is important in its own right, because the mean, variance and other moments of the sufficient statistic T(x) can be derived simply by differentiating A(η). For example, because log(x) is one of the components of the sufficient statistic of the gamma distribution, can be easily determined for this distribution using A(η). Technically, this is true because

is the cumulant generating function of the sufficient statistic.

Properties

Exponential families have a large number of properties that make them extremely useful for statistical analysis. In many cases, it can be shown that only exponential families have these properties. Examples:

Given an exponential family defined by , where is the parameter space, such that . Then

Examples

It is critical, when considering the examples in this section, to remember the discussion above about what it means to say that a "distribution" is an exponential family, and in particular to keep in mind that the set of parameters that are allowed to vary is critical in determining whether a "distribution" is or is not an exponential family.

The normal, exponential, log-normal, gamma, chi-squared, beta, Dirichlet, Bernoulli, categorical, Poisson, geometric, inverse Gaussian, ALAAM, von Mises, and von Mises-Fisher distributions are all exponential families.

Some distributions are exponential families only if some of their parameters are held fixed. The family of Pareto distributions with a fixed minimum bound xm form an exponential family. The families of binomial and multinomial distributions with fixed number of trials n but unknown probability parameter(s) are exponential families. The family of negative binomial distributions with fixed number of failures (a.k.a. stopping-time parameter) r is an exponential family. However, when any of the above-mentioned fixed parameters are allowed to vary, the resulting family is not an exponential family.

As mentioned above, as a general rule, the support of an exponential family must remain the same across all parameter settings in the family. This is why the above cases (e.g. binomial with varying number of trials, Pareto with varying minimum bound) are not exponential families — in all of the cases, the parameter in question affects the support (particularly, changing the minimum or maximum possible value). For similar reasons, neither the discrete uniform distribution nor continuous uniform distribution are exponential families as one or both bounds vary.

The Weibull distribution with fixed shape parameter k is an exponential family. Unlike in the previous examples, the shape parameter does not affect the support; the fact that allowing it to vary makes the Weibull non-exponential is due rather to the particular form of the Weibull's probability density function (k appears in the exponent of an exponent).

In general, distributions that result from a finite or infinite mixture of other distributions, e.g. mixture model densities and compound probability distributions, are not exponential families. Examples are typical Gaussian mixture models as well as many heavy-tailed distributions that result from compounding (i.e. infinitely mixing) a distribution with a prior distribution over one of its parameters, e.g. the Student's t-distribution (compounding a normal distribution over a gamma-distributed precision prior), and the beta-binomial and Dirichlet-multinomial distributions. Other examples of distributions that are not exponential families are the F-distribution, Cauchy distribution, hypergeometric distribution and logistic distribution.

Following are some detailed examples of the representation of some useful distribution as exponential families.

Normal distribution: unknown mean, known variance

As a first example, consider a random variable distributed normally with unknown mean μ and known variance σ2. The probability density function is then

This is a single-parameter exponential family, as can be seen by setting

If σ = 1 this is in canonical form, as then η(μ) = μ.

Normal distribution: unknown mean and unknown variance

Next, consider the case of a normal distribution with unknown mean and unknown variance. The probability density function is then

This is an exponential family which can be written in canonical form by defining

Binomial distribution

As an example of a discrete exponential family, consider the binomial distribution with known number of trials n. The probability mass function for this distribution is

This can equivalently be written as

which shows that the binomial distribution is an exponential family, whose natural parameter is

This function of p is known as logit.

Table of distributions

The following table shows how to rewrite a number of common distributions as exponential-family distributions with natural parameters. Refer to the flashcards [12] for main exponential families.

For a scalar variable and scalar parameter, the form is as follows:

For a scalar variable and vector parameter:

For a vector variable and vector parameter:

The above formulas choose the functional form of the exponential-family with a log-partition function . The reason for this is so that the moments of the sufficient statistics can be calculated easily, simply by differentiating this function. Alternative forms involve either parameterizing this function in terms of the normal parameter instead of the natural parameter, and/or using a factor outside of the exponential. The relation between the latter and the former is:

To convert between the representations involving the two types of parameter, use the formulas below for writing one type of parameter in terms of the other.

DistributionParameter(s) Natural parameter(s) Inverse parameter mappingBase measure Sufficient statistic Log-partition Log-partition
Bernoulli distribution
binomial distribution
with known number of trials
Poisson distribution
negative binomial distribution
with known number of failures
exponential distribution
Pareto distribution
with known minimum value
Weibull distribution
with known shape k
Laplace distribution
with known mean
chi-squared distribution
normal distribution
known variance
continuous Bernoulli distribution
normal distribution
log-normal distribution
inverse Gaussian distribution
gamma distribution
inverse gamma distribution
generalized inverse Gaussian distribution
scaled inverse chi-squared distribution
beta distribution

(variant 1)
beta distribution

(variant 2)
multivariate normal distribution
categorical distribution

(variant 1)


where


where
categorical distribution

(variant 2)


where

where

categorical distribution

(variant 3)


where




multinomial distribution

(variant 1)
with known number of trials


where


where
multinomial distribution

(variant 2)
with known number of trials


where

where

multinomial distribution

(variant 3)
with known number of trials


where




Dirichlet distribution

(variant 1)
Dirichlet distribution

(variant 2)
Wishart distribution

      


      

  • Three variants with different parameterizations are given, to facilitate computing moments of the sufficient statistics.
Note: Uses the fact that i.e. the trace of a matrix product is much like a dot product. The matrix parameters are assumed to be vectorized (laid out in a vector) when inserted into the exponential form. Also, and are symmetric, so e.g.
inverse Wishart distribution

      


      

normal-gamma distribution

      

* The Iverson bracket is a generalization of the discrete delta-function: If the bracketed expression is true, the bracket has value 1; if the enclosed statement is false, the Iverson bracket is zero. There are many variant notations, e.g. wavey brackets: a=b is equivalent to the [a=b] notation used above.

The three variants of the categorical distribution and multinomial distribution are due to the fact that the parameters are constrained, such that

Thus, there are only independent parameters.

Variants 1 and 2 are not actually standard exponential families at all. Rather they are curved exponential families, i.e. there are independent parameters embedded in a -dimensional parameter space. [13] Many of the standard results for exponential families do not apply to curved exponential families. An example is the log-partition function , which has the value of 0 in the curved cases. In standard exponential families, the derivatives of this function correspond to the moments (more technically, the cumulants) of the sufficient statistics, e.g. the mean and variance. However, a value of 0 suggests that the mean and variance of all the sufficient statistics are uniformly 0, whereas in fact the mean of the th sufficient statistic should be . (This does emerge correctly when using the form of shown in variant 3.)

Moments and cumulants of the sufficient statistic

Normalization of the distribution

We start with the normalization of the probability distribution. In general, any non-negative function f(x) that serves as the kernel of a probability distribution (the part encoding all dependence on x) can be made into a proper distribution by normalizing: i.e.

where

The factor Z is sometimes termed the normalizer or partition function , based on an analogy to statistical physics.

In the case of an exponential family where

the kernel is

and the partition function is

Since the distribution must be normalized, we have

In other words,

or equivalently

This justifies calling A the log-normalizer or log-partition function.

Moment-generating function of the sufficient statistic

Now, the moment-generating function of T(x) is

proving the earlier statement that

is the cumulant generating function for T.

An important subclass of exponential families are the natural exponential families, which have a similar form for the moment-generating function for the distribution of x.

Differential identities for cumulants

In particular, using the properties of the cumulant generating function,

and

The first two raw moments and all mixed second moments can be recovered from these two identities. Higher-order moments and cumulants are obtained by higher derivatives. This technique is often useful when T is a complicated function of the data, whose moments are difficult to calculate by integration.

Another way to see this that does not rely on the theory of cumulants is to begin from the fact that the distribution of an exponential family must be normalized, and differentiate. We illustrate using the simple case of a one-dimensional parameter, but an analogous derivation holds more generally.

In the one-dimensional case, we have

This must be normalized, so

Take the derivative of both sides with respect to η:

Therefore,

Example 1

As an introductory example, consider the gamma distribution, whose distribution is defined by

Referring to the above table, we can see that the natural parameter is given by

the reverse substitutions are

the sufficient statistics are and the log-partition function is

We can find the mean of the sufficient statistics as follows. First, for η1:

Where is the digamma function (derivative of log gamma), and we used the reverse substitutions in the last step.

Now, for η2:

again making the reverse substitution in the last step.

To compute the variance of x, we just differentiate again:

All of these calculations can be done using integration, making use of various properties of the gamma function, but this requires significantly more work.

Example 2

As another example consider a real valued random variable X with density

indexed by shape parameter (this is called the skew-logistic distribution). The density can be rewritten as

Notice this is an exponential family with natural parameter

sufficient statistic

and log-partition function

So using the first identity,

and using the second identity

This example illustrates a case where using this method is very simple, but the direct calculation would be nearly impossible.

Example 3

The final example is one where integration would be extremely difficult. This is the case of the Wishart distribution, which is defined over matrices. Even taking derivatives is a bit tricky, as it involves matrix calculus, but the respective identities are listed in that article.

From the above table, we can see that the natural parameter is given by

the reverse substitutions are

and the sufficient statistics are

The log-partition function is written in various forms in the table, to facilitate differentiation and back-substitution. We use the following forms:

Expectation of X (associated with η1)

To differentiate with respect to η1, we need the following matrix calculus identity:

Then:

The last line uses the fact that V is symmetric, and therefore it is the same when transposed.

Expectation of log |X| (associated with η2)

Now, for η2, we first need to expand the part of the log-partition function that involves the multivariate gamma function:

We also need the digamma function:

Then:

This latter formula is listed in the Wishart distribution article. Both of these expectations are needed when deriving the variational Bayes update equations in a Bayes network involving a Wishart distribution (which is the conjugate prior of the multivariate normal distribution).

Computing these formulas using integration would be much more difficult. The first one, for example, would require matrix integration.

Entropy

Relative entropy

The relative entropy (Kullback–Leibler divergence, KL divergence) of two distributions in an exponential family has a simple expression as the Bregman divergence between the natural parameters with respect to the log-normalizer. [14] The relative entropy is defined in terms of an integral, while the Bregman divergence is defined in terms of a derivative and inner product, and thus is easier to calculate and has a closed-form expression (assuming the derivative has a closed-form expression). Further, the Bregman divergence in terms of the natural parameters and the log-normalizer equals the Bregman divergence of the dual parameters (expectation parameters), in the opposite order, for the convex conjugate function. [15]

Fixing an exponential family with log-normalizer (with convex conjugate ), writing for the distribution in this family corresponding a fixed value of the natural parameter (writing for another value, and with for the corresponding dual expectation/moment parameters), writing KL for the KL divergence, and for the Bregman divergence, the divergences are related as:

The KL divergence is conventionally written with respect to the first parameter, while the Bregman divergence is conventionally written with respect to the second parameter, and thus this can be read as "the relative entropy is equal to the Bregman divergence defined by the log-normalizer on the swapped natural parameters", or equivalently as "equal to the Bregman divergence defined by the dual to the log-normalizer on the expectation parameters".

Maximum-entropy derivation

Exponential families arise naturally as the answer to the following question: what is the maximum-entropy distribution consistent with given constraints on expected values?

The information entropy of a probability distribution dF(x) can only be computed with respect to some other probability distribution (or, more generally, a positive measure), and both measures must be mutually absolutely continuous. Accordingly, we need to pick a reference measuredH(x) with the same support as dF(x).

The entropy of dF(x) relative to dH(x) is

or

where dF/dH and dH/dF are Radon–Nikodym derivatives. The ordinary definition of entropy for a discrete distribution supported on a set I, namely

assumes, though this is seldom pointed out, that dH is chosen to be the counting measure on I.

Consider now a collection of observable quantities (random variables) Ti. The probability distribution dF whose entropy with respect to dH is greatest, subject to the conditions that the expected value of Ti be equal to ti, is an exponential family with dH as reference measure and (T1, ..., Tn) as sufficient statistic.

The derivation is a simple variational calculation using Lagrange multipliers. Normalization is imposed by letting T0 = 1 be one of the constraints. The natural parameters of the distribution are the Lagrange multipliers, and the normalization factor is the Lagrange multiplier associated to T0.

For examples of such derivations, see Maximum entropy probability distribution.

Role in statistics

Classical estimation: sufficiency

According to the Pitman Koopman Darmois theorem, among families of probability distributions whose domain does not vary with the parameter being estimated, only in exponential families is there a sufficient statistic whose dimension remains bounded as sample size increases.

Less tersely, suppose Xk, (where k = 1, 2, 3, ... n) are independent, identically distributed random variables. Only if their distribution is one of the exponential family of distributions is there a sufficient statistic T(X1, ..., Xn) whose number of scalar components does not increase as the sample size n increases; the statistic T may be a vector or a single scalar number, but whatever it is, its size will neither grow nor shrink when more data are obtained.

As a counterexample if these conditions are relaxed, the family of uniform distributions (either discrete or continuous, with either or both bounds unknown) has a sufficient statistic, namely the sample maximum, sample minimum, and sample size, but does not form an exponential family, as the domain varies with the parameters.

Bayesian estimation: conjugate distributions

Exponential families are also important in Bayesian statistics. In Bayesian statistics a prior distribution is multiplied by a likelihood function and then normalised to produce a posterior distribution. In the case of a likelihood which belongs to an exponential family there exists a conjugate prior, which is often also in an exponential family. A conjugate prior π for the parameter of an exponential family

is given by

or equivalently

where s is the dimension of and and are hyperparameters (parameters controlling parameters). corresponds to the effective number of observations that the prior distribution contributes, and corresponds to the total amount that these pseudo-observations contribute to the sufficient statistic over all observations and pseudo-observations. is a normalization constant that is automatically determined by the remaining functions and serves to ensure that the given function is a probability density function (i.e. it is normalized). and equivalently are the same functions as in the definition of the distribution over which π is the conjugate prior.

A conjugate prior is one which, when combined with the likelihood and normalised, produces a posterior distribution which is of the same type as the prior. For example, if one is estimating the success probability of a binomial distribution, then if one chooses to use a beta distribution as one's prior, the posterior is another beta distribution. This makes the computation of the posterior particularly simple. Similarly, if one is estimating the parameter of a Poisson distribution the use of a gamma prior will lead to another gamma posterior. Conjugate priors are often very flexible and can be very convenient. However, if one's belief about the likely value of the theta parameter of a binomial is represented by (say) a bimodal (two-humped) prior distribution, then this cannot be represented by a beta distribution. It can however be represented by using a mixture density as the prior, here a combination of two beta distributions; this is a form of hyperprior.

An arbitrary likelihood will not belong to an exponential family, and thus in general no conjugate prior exists. The posterior will then have to be computed by numerical methods.

To show that the above prior distribution is a conjugate prior, we can derive the posterior.

First, assume that the probability of a single observation follows an exponential family, parameterized using its natural parameter:

Then, for data , the likelihood is computed as follows:

Then, for the above conjugate prior:

We can then compute the posterior as follows:

The last line is the kernel of the posterior distribution, i.e.

This shows that the posterior has the same form as the prior.

The data X enters into this equation only in the expression

which is termed the sufficient statistic of the data. That is, the value of the sufficient statistic is sufficient to completely determine the posterior distribution. The actual data points themselves are not needed, and all sets of data points with the same sufficient statistic will have the same distribution. This is important because the dimension of the sufficient statistic does not grow with the data size — it has only as many components as the components of (equivalently, the number of parameters of the distribution of a single data point).

The update equations are as follows:

This shows that the update equations can be written simply in terms of the number of data points and the sufficient statistic of the data. This can be seen clearly in the various examples of update equations shown in the conjugate prior page. Because of the way that the sufficient statistic is computed, it necessarily involves sums of components of the data (in some cases disguised as products or other forms — a product can be written in terms of a sum of logarithms). The cases where the update equations for particular distributions don't exactly match the above forms are cases where the conjugate prior has been expressed using a different parameterization than the one that produces a conjugate prior of the above form — often specifically because the above form is defined over the natural parameter while conjugate priors are usually defined over the actual parameter

Unbiased estimation

If the likelihood is an exponential family, then the unbiased estimator of is . [16]

Hypothesis testing: uniformly most powerful tests

A one-parameter exponential family has a monotone non-decreasing likelihood ratio in the sufficient statistic T(x), provided that η(θ) is non-decreasing. As a consequence, there exists a uniformly most powerful test for testing the hypothesis H0: θθ0vs. H1: θ < θ0.

Generalized linear models

Exponential families form the basis for the distribution functions used in generalized linear models (GLM), a class of model that encompasses many of the commonly used regression models in statistics. Examples include logistic regression using the binomial family and Poisson regression.

See also

Footnotes

  1. For example, the family of normal distributions includes the standard normal distribution N(0, 1) with mean 0 and variance 1, as well as other normal distributions with different mean and variance.
  2. "Partition function" is often used in statistics as a synonym of "normalization factor".
  3. These distributions are often not themselves exponential families. Common examples of non-exponential families arising from exponential ones are the Student's t-distribution, beta-binomial distribution and Dirichlet-multinomial distribution.

Related Research Articles

The likelihood function is the joint probability of observed data viewed as a function of the parameters of a statistical model.

In statistics, maximum likelihood estimation (MLE) is a method of estimating the parameters of an assumed probability distribution, given some observed data. This is achieved by maximizing a likelihood function so that, under the assumed statistical model, the observed data is most probable. The point in the parameter space that maximizes the likelihood function is called the maximum likelihood estimate. The logic of maximum likelihood is both intuitive and flexible, and as such the method has become a dominant means of statistical inference.

In mechanics and geometry, the 3D rotation group, often denoted SO(3), is the group of all rotations about the origin of three-dimensional Euclidean space under the operation of composition.

<span class="mw-page-title-main">Hamiltonian mechanics</span> Formulation of classical mechanics using momenta

Hamiltonian mechanics emerged in 1833 as a reformulation of Lagrangian mechanics. Introduced by Sir William Rowan Hamilton, Hamiltonian mechanics replaces (generalized) velocities used in Lagrangian mechanics with (generalized) momenta. Both theories provide interpretations of classical mechanics and describe the same physical phenomena.

<span class="mw-page-title-main">Gamma distribution</span> Probability distribution

In probability theory and statistics, the gamma distribution is a two-parameter family of continuous probability distributions. The exponential distribution, Erlang distribution, and chi-squared distribution are special cases of the gamma distribution. There are two equivalent parameterizations in common use:

  1. With a shape parameter and a scale parameter .
  2. With a shape parameter and an inverse scale parameter , called a rate parameter.
<span class="mw-page-title-main">Expectation–maximization algorithm</span> Iterative method for finding maximum likelihood estimates in statistical models

In statistics, an expectation–maximization (EM) algorithm is an iterative method to find (local) maximum likelihood or maximum a posteriori (MAP) estimates of parameters in statistical models, where the model depends on unobserved latent variables. The EM iteration alternates between performing an expectation (E) step, which creates a function for the expectation of the log-likelihood evaluated using the current estimate for the parameters, and a maximization (M) step, which computes parameters maximizing the expected log-likelihood found on the E step. These parameter-estimates are then used to determine the distribution of the latent variables in the next E step. It can be used, for example, to estimate a mixture of gaussians, or to solve the multiple linear regression problem.

In numerical analysis and computational statistics, rejection sampling is a basic technique used to generate observations from a distribution. It is also commonly called the acceptance-rejection method or "accept-reject algorithm" and is a type of exact simulation method. The method works for any distribution in with a density.

In mathematical statistics, the Fisher information is a way of measuring the amount of information that an observable random variable X carries about an unknown parameter θ of a distribution that models X. Formally, it is the variance of the score, or the expected value of the observed information.

In statistics, a generalized linear model (GLM) is a flexible generalization of ordinary linear regression. The GLM generalizes linear regression by allowing the linear model to be related to the response variable via a link function and by allowing the magnitude of the variance of each measurement to be a function of its predicted value.

In statistics and information theory, a maximum entropy probability distribution has entropy that is at least as great as that of all other members of a specified class of probability distributions. According to the principle of maximum entropy, if nothing is known about a distribution except that it belongs to a certain class, then the distribution with the largest entropy should be chosen as the least-informative default. The motivation is twofold: first, maximizing entropy minimizes the amount of prior information built into the distribution; second, many physical systems tend to move towards maximal entropy configurations over time.

The cross-entropy (CE) method is a Monte Carlo method for importance sampling and optimization. It is applicable to both combinatorial and continuous problems, with either a static or noisy objective.

In probability and statistics, a natural exponential family (NEF) is a class of probability distributions that is a special case of an exponential family (EF).

In probability and statistics, the class of exponential dispersion models (EDM), also called exponential dispersion family (EDF), is a set of probability distributions that represents a generalisation of the natural exponential family. Exponential dispersion models play an important role in statistical theory, in particular in generalized linear models because they have a special structure which enables deductions to be made about appropriate statistical inference.

Natural evolution strategies (NES) are a family of numerical optimization algorithms for black box problems. Similar in spirit to evolution strategies, they iteratively update the (continuous) parameters of a search distribution by following the natural gradient towards higher expected fitness.

In Bayesian statistics, the posterior predictive distribution is the distribution of possible unobserved values conditional on the observed values.

In statistics, the variance function is a smooth function that depicts the variance of a random quantity as a function of its mean. The variance function is a measure of heteroscedasticity and plays a large role in many settings of statistical modelling. It is a main ingredient in the generalized linear model framework and a tool used in non-parametric regression, semiparametric regression and functional data analysis. In parametric modeling, variance functions take on a parametric form and explicitly describe the relationship between the variance and the mean of a random quantity. In a non-parametric setting, the variance function is assumed to be a smooth function.

In image analysis, the generalized structure tensor (GST) is an extension of the Cartesian structure tensor to curvilinear coordinates. It is mainly used to detect and to represent the "direction" parameters of curves, just as the Cartesian structure tensor detects and represents the direction in Cartesian coordinates. Curve families generated by pairs of locally orthogonal functions have been the best studied.

In statistics, the class of vector generalized linear models (VGLMs) was proposed to enlarge the scope of models catered for by generalized linear models (GLMs). In particular, VGLMs allow for response variables outside the classical exponential family and for more than one parameter. Each parameter can be transformed by a link function. The VGLM framework is also large enough to naturally accommodate multiple responses; these are several independent responses each coming from a particular statistical distribution with possibly different parameter values.

Exponential Tilting (ET), Exponential Twisting, or Exponential Change of Measure (ECM) is a distribution shifting technique used in many parts of mathematics. The different exponential tiltings of a random variable is known as the natural exponential family of .

<span class="mw-page-title-main">Hyperbolastic functions</span> Mathematical functions

The hyperbolastic functions, also known as hyperbolastic growth models, are mathematical functions that are used in medical statistical modeling. These models were originally developed to capture the growth dynamics of multicellular tumor spheres, and were introduced in 2005 by Mohammad Tabatabai, David Williams, and Zoran Bursac. The precision of hyperbolastic functions in modeling real world problems is somewhat due to their flexibility in their point of inflection. These functions can be used in a wide variety of modeling problems such as tumor growth, stem cell proliferation, pharma kinetics, cancer growth, sigmoid activation function in neural networks, and epidemiological disease progression or regression.

References

Citations

  1. Kupperman, M. (1958). "Probabilities of hypotheses and information-statistics in sampling from exponential-class populations". Annals of Mathematical Statistics . 9 (2): 571–575. doi: 10.1214/aoms/1177706633 . JSTOR   2237349.
  2. Andersen, Erling (September 1970). "Sufficiency and Exponential Families for Discrete Sample Spaces". Journal of the American Statistical Association . Journal of the American Statistical Association. 65 (331): 1248–1255. doi:10.2307/2284291. JSTOR   2284291. MR   0268992.
  3. Pitman, E.; Wishart, J. (1936). "Sufficient statistics and intrinsic accuracy". Mathematical Proceedings of the Cambridge Philosophical Society . 32 (4): 567–579. Bibcode:1936PCPS...32..567P. doi:10.1017/S0305004100019307. S2CID   120708376.
  4. Darmois, G. (1935). "Sur les lois de probabilites a estimation exhaustive". C. R. Acad. Sci. Paris (in French). 200: 1265–1266.
  5. Koopman, B. (1936). "On distribution admitting a sufficient statistic". Transactions of the American Mathematical Society . American Mathematical Society. 39 (3): 399–409. doi: 10.2307/1989758 . JSTOR   1989758. MR   1501854.
  6. "General Exponential Families". www.randomservices.org. Retrieved 2022-08-30.
  7. Abramovich & Ritov (2013). Statistical Theory: A concise introduction. Chapman & Hall. ISBN   978-1439851845.
  8. Blei, David. "Variational Inference" (PDF). Princeton U.
  9. Casella, George (2002). Statistical inference. Roger L. Berger (2nd ed.). Australia: Thomson Learning. Theorem 6.2.25. ISBN   0-534-24312-6. OCLC   46538638.
  10. Brown, Lawrence D. (1986). Fundamentals of statistical exponential families : with applications in statistical decision theory. Hayward, Calif.: Institute of Mathematical Statistics. Theorem 2.12. ISBN   0-940600-10-2. OCLC   15986663.
  11. Keener, Robert W. (2010). Theoretical statistics : topics for a core course. New York. pp. 47, Example 3.12. ISBN   978-0-387-93839-4. OCLC   676700036.{{cite book}}: CS1 maint: location missing publisher (link)
  12. Nielsen, Frank; Garcia, Vincent (2009). "Statistical exponential families: A digest with flash cards". arXiv: 0911.4863 [cs.LG].
  13. van Garderen, Kees Jan (1997). "Curved Exponential Models in Econometrics". Econometric Theory . 13 (6): 771–790. doi:10.1017/S0266466600006253. S2CID   122742807.
  14. Nielsen & Nock 2010, 4. Bregman Divergences and Relative Entropy of Exponential Families.
  15. Barndorff-Nielsen 1978, 9.1 Convex duality and exponential families.
  16. Efron, Bradley (December 2011). "Tweedie's Formula and Selection Bias". Journal of the American Statistical Association. 106 (496): 1602–1614. doi:10.1198/jasa.2011.tm11181. ISSN   0162-1459. PMC   3325056 . PMID   22505788.

Sources

Further reading