Parametrization (geometry)

Last updated

In mathematics, and more specifically in geometry, parametrization (or parameterization; also parameterisation, parametrisation) is the process of finding parametric equations of a curve, a surface, or, more generally, a manifold or a variety, defined by an implicit equation. The inverse process is called implicitization. [1] "To parameterize" by itself means "to express in terms of parameters". [2]

Contents

Parametrization is a mathematical process consisting of expressing the state of a system, process or model as a function of some independent quantities called parameters. The state of the system is generally determined by a finite set of coordinates, and the parametrization thus consists of one function of several real variables for each coordinate. The number of parameters is the number of degrees of freedom of the system.

For example, the position of a point that moves on a curve in three-dimensional space is determined by the time needed to reach the point when starting from a fixed origin. If x, y, z are the coordinates of the point, the movement is thus described by a parametric equation [1]

where t is the parameter and denotes the time. Such a parametric equation completely determines the curve, without the need of any interpretation of t as time, and is thus called a parametric equation of the curve (this is sometimes abbreviated by saying that one has a parametric curve). One similarly gets the parametric equation of a surface by considering functions of two parameters t and u.

Non-uniqueness

Parametrizations are not generally unique. The ordinary three-dimensional object can be parametrized (or "coordinatized") equally efficiently with Cartesian coordinates (x,y,z), cylindrical polar coordinates (ρ, φ, z), spherical coordinates (r,φ,θ) or other coordinate systems.

Similarly, the color space of human trichromatic color vision can be parametrized in terms of the three colors red, green and blue, RGB, or with cyan, magenta, yellow and black, CMYK.

Dimensionality

Generally, the minimum number of parameters required to describe a model or geometric object is equal to its dimension, and the scope of the parameters—within their allowed ranges—is the parameter space. Though a good set of parameters permits identification of every point in the object space, it may be that, for a given parametrization, different parameter values can refer to the same point. Such mappings are surjective but not injective. An example is the pair of cylindrical polar coordinates (ρ,φ,z) and (ρ,φ+2π,z).

Invariance

As indicated above, there is arbitrariness in the choice of parameters of a given model, geometric object, etc. Often, one wishes to determine intrinsic properties of an object that do not depend on this arbitrariness, which are therefore independent of any particular choice of parameters. This is particularly the case in physics, wherein parametrization invariance (or 'reparametrization invariance') is a guiding principle in the search for physically acceptable theories (particularly in general relativity).

For example, whilst the location of a fixed point on some curved line may be given by a set of numbers whose values depend on how the curve is parametrized, the length (appropriately defined) of the curve between two such fixed points will be independent of the particular choice of parametrization (in this case: the method by which an arbitrary point on the line is uniquely indexed). The length of the curve is therefore a parameterization-invariant quantity. In such cases parameterization is a mathematical tool employed to extract a result whose value does not depend on, or make reference to, the details of the parameterization. More generally, parametrization invariance of a physical theory implies that either the dimensionality or the volume of the parameter space is larger than is necessary to describe the physics (the quantities of physical significance) in question.

Though the theory of general relativity can be expressed without reference to a coordinate system, calculations of physical (i.e. observable) quantities such as the curvature of spacetime invariably involve the introduction of a particular coordinate system in order to refer to spacetime points involved in the calculation. In the context of general relativity then, the choice of coordinate system may be regarded as a method of 'parameterizing' the spacetime, and the insensitivity of the result of a calculation of a physically-significant quantity to that choice can be regarded as an example of parameterization invariance.

As another example, physical theories whose observable quantities depend only on the relative distances (the ratio of distances) between pairs of objects are said to be scale invariant. In such theories any reference in the course of a calculation to an absolute distance would imply the introduction of a parameter to which the theory is invariant.

Examples

Techniques

Related Research Articles

Lorentz transformation Family of linear transformations

In physics, the Lorentz transformations are a one-parameter family of linear transformations from a coordinate frame in spacetime to another frame that moves at a constant velocity relative to the former. The respective inverse transformation is then parametrized by the negative of this velocity. The transformations are named after the Dutch physicist Hendrik Lorentz.

Quantum field theory Theoretical framework combining classical field theory, special relativity, and quantum mechanics

In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines classical field theory, special relativity and quantum mechanics, but not general relativity's description of gravity. QFT is used in particle physics to construct physical models of subatomic particles and in condensed matter physics to construct models of quasiparticles.

Special relativity Theory of interwoven space and time by Albert Einstein

In physics, the special theory of relativity, or special relativity for short, is a scientific theory regarding the relationship between space and time. In Albert Einstein's original treatment, it is based on two postulates:

  1. the laws of physics are invariant in all inertial frames of reference ; and
  2. the speed of light in a vacuum is the same for all observers, regardless of the motion of the light source or observer.
Spacetime Mathematical model combining space and time

In physics, spacetime is any mathematical model which fuses the three dimensions of space and the one dimension of time into a single four-dimensional manifold. Spacetime diagrams can be used to visualize relativistic effects, such as why different observers perceive where and when events occur differently.

Gravitational singularity

A gravitational singularity, spacetime singularity or simply singularity is a location in spacetime where the mass and gravitational field of a celestial body is predicted to become infinite by general relativity in a way that does not depend on the coordinate system. The quantities used to measure gravitational field strength are the scalar invariant curvatures of spacetime, which includes a measure of the density of matter. Since such quantities become infinite at the singularity, the laws of normal spacetime break down.

World line Unique path of an object as it travels through spacetime

The world line of an object is the path that object traces in 4-dimensional spacetime. It is an important concept in modern physics, and particularly theoretical physics.

Minkowski space

In mathematical physics, Minkowski space is a combination of three-dimensional Euclidean space and time into a four-dimensional manifold where the spacetime interval between any two events is independent of the inertial frame of reference in which they are recorded. Although initially developed by mathematician Hermann Minkowski for Maxwell's equations of electromagnetism, the mathematical structure of Minkowski spacetime was shown to be implied by the postulates of special relativity.

In mathematics and physics, n-dimensional anti-de Sitter space (AdSn) is a maximally symmetric Lorentzian manifold with constant negative scalar curvature. Anti-de Sitter space and de Sitter space are named after Willem de Sitter (1872–1934), professor of astronomy at Leiden University and director of the Leiden Observatory. Willem de Sitter and Albert Einstein worked together closely in Leiden in the 1920s on the spacetime structure of the universe.

Parametric equation Representation of a curve by a function of a parameter

In mathematics, a parametric equation defines a group of quantities as functions of one or more independent variables called parameters. Parametric equations are commonly used to express the coordinates of the points that make up a geometric object such as a curve or surface, in which case the equations are collectively called a parametric representation or parameterization of the object.

In physics, mathematics and statistics, scale invariance is a feature of objects or laws that do not change if scales of length, energy, or other variables, are multiplied by a common factor, and thus represent a universality.

Mathematics of general relativity Mathematical structures and techniques used in the theory of general relativity.

The mathematics of general relativity refers to various mathematical structures and techniques that are used in studying and formulating Albert Einstein's theory of general relativity. The main tools used in this geometrical theory of gravitation are tensor fields defined on a Lorentzian manifold representing spacetime. This article is a general description of the mathematics of general relativity.

In general relativity, geodesic deviation describes the tendency of objects to approach or recede from one another while moving under the influence of a spatially varying gravitational field. Put another way, if two objects are set in motion along two initially parallel trajectories, the presence of a tidal gravitational force will cause the trajectories to bend towards or away from each other, producing a relative acceleration between the objects.

In theoretical physics, Nordström's theory of gravitation was a predecessor of general relativity. Strictly speaking, there were actually two distinct theories proposed by the Finnish theoretical physicist Gunnar Nordström, in 1912 and 1913 respectively. The first was quickly dismissed, but the second became the first known example of a metric theory of gravitation, in which the effects of gravitation are treated entirely in terms of the geometry of a curved spacetime.

A parametric surface is a surface in the Euclidean space which is defined by a parametric equation with two parameters Parametric representation is a very general way to specify a surface, as well as implicit representation. Surfaces that occur in two of the main theorems of vector calculus, Stokes' theorem and the divergence theorem, are frequently given in a parametric form. The curvature and arc length of curves on the surface, surface area, differential geometric invariants such as the first and second fundamental forms, Gaussian, mean, and principal curvatures can all be computed from a given parametrization.

For classical dynamics at relativistic speeds, see relativistic mechanics.

Surface (mathematics) Mathematical idealization of the surface of a body

In mathematics, a surface is a generalization of a plane, which is not necessarily flat – that is, the curvature is not necessarily zero. This is analogous to a curve generalizing a straight line. There are many more precise definitions, depending on the context and the mathematical tools that are used to analyze the surface.

Introduction to the mathematics of general relativity

The mathematics of general relativity are complex. In Newton's theories of motion, an object's length and the rate at which time passes remain constant while the object accelerates, meaning that many problems in Newtonian mechanics may be solved by algebra alone. In relativity, however, an object's length and the rate at which time passes both change appreciably as the object's speed approaches the speed of light, meaning that more variables and more complicated mathematics are required to calculate the object's motion. As a result, relativity requires the use of concepts such as vectors, tensors, pseudotensors and curvilinear coordinates.

Gauge theory Physical theory with fields invariant under the action of local "gauge" Lie groups

In physics, a gauge theory is a type of field theory in which the Lagrangian does not change under local transformations from certain Lie groups.

Unit hyperbola geometric figure

In geometry, the unit hyperbola is the set of points (x,y) in the Cartesian plane that satisfy the implicit equation In the study of indefinite orthogonal groups, the unit hyperbola forms the basis for an alternative radial length

Lagrangian field theory is a formalism in classical field theory. It is the field-theoretic analogue of Lagrangian mechanics. Lagrangian mechanics is used to analyze the motion of a system of discrete particles each with a finite number of degrees of freedom. Lagrangian field theory applies to continua and fields, which have an infinite number of degrees of freedom.

References

  1. 1 2 Hughes-Hallet, Deborah; McCallum, William G.; Gleason, Andrew M. (2012-01-01). Calculus : Single and multivariable. John wiley. p. 780. ISBN   9780470888612. OCLC   828768012.
  2. "Definition of PARAMETERIZE". www.merriam-webster.com. Retrieved 2017-05-11.