Invariant (physics)

Last updated

In theoretical physics, an invariant is an observable of a physical system which remains unchanged under some transformation. Invariance, as a broader term, also applies to the no change of form of physical laws under a transformation, and is closer in scope to the mathematical definition. Invariants of a system are deeply tied to the symmetries imposed by its environment.

Contents

Invariance is an important concept in modern theoretical physics, and many theories are expressed in terms of their symmetries and invariants.

Examples

In classical and quantum mechanics, invariance of space under translation results in momentum being an invariant and the conservation of momentum, whereas invariance of the origin of time, i.e. translation in time, results in energy being an invariant and the conservation of energy. In general, by Noether's theorem, any invariance of a physical system under a continuous symmetry leads to a fundamental conservation law.

In crystals, the electron density is periodic and invariant with respect to discrete translations by unit cell vectors. In very few materials, this symmetry can be broken due to enhanced electron correlations.

Another examples of physical invariants are the speed of light, and charge and mass of a particle observed from two reference frames moving with respect to one another (invariance under a spacetime Lorentz transformation [1] ), and invariance of time and acceleration under a Galilean transformation between two such frames moving at low velocities.

Quantities can be invariant under some common transformations but not under others. For example, the velocity of a particle is invariant when switching coordinate representations from rectangular to curvilinear coordinates, but is not invariant when transforming between frames of reference that are moving with respect to each other. Other quantities, like the speed of light, are always invariant.

Physical laws are said to be invariant under transformations when their predictions remain unchanged. This generally means that the form of the law (e.g. the type of differential equations used to describe the law) is unchanged in transformations so that no additional or different solutions are obtained.

For example the rule describing Newton's force of gravity between two chunks of matter is the same whether they are in this galaxy or another (translational invariance in space). It is also the same today as it was a million years ago (translational invariance in time). The law does not work differently depending on whether one chunk is east or north of the other one (rotational invariance). Nor does the law have to be changed depending on whether you measure the force between the two chunks in a railroad station, or do the same experiment with the two chunks on a uniformly moving train (principle of relativity).

David Mermin: It's About Time - Understanding Einstein's Relativity, Chapter 1

Covariance and contravariance generalize the mathematical properties of invariance in tensor mathematics, and are frequently used in electromagnetism, special relativity, and general relativity.

See also

Related Research Articles

In physics, a conservation law states that a particular measurable property of an isolated physical system does not change as the system evolves over time. Exact conservation laws include conservation of energy, conservation of linear momentum, conservation of angular momentum, and conservation of electric charge. There are also many approximate conservation laws, which apply to such quantities as mass, parity, lepton number, baryon number, strangeness, hypercharge, etc. These quantities are conserved in certain classes of physics processes, but not in all.

Momentum Conserved physical quantity related to the motion of a body

In Newtonian mechanics, linear momentum, translational momentum, or simply momentum is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. If m is an object's mass and v is its velocity, then the object's momentum is:

In SI units, momentum is measured in kilogram meters per second (kg⋅m/s).

Special relativity Theory of interwoven space and time by Albert Einstein

In physics, the special theory of relativity, or special relativity for short, is a scientific theory regarding the relationship between space and time. In Albert Einstein's original treatment, the theory is based on two postulates:

  1. The laws of physics are invariant in all inertial frames of reference.
  2. The speed of light in vacuum is the same for all observers, regardless of the motion of the light source or observer.
Spacetime Mathematical model combining space and time

In physics, spacetime is any mathematical model which fuses the three dimensions of space and the one dimension of time into a single four-dimensional manifold. The fabric of space-time is a conceptual model combining the three dimensions of space with the fourth dimension of time. Spacetime diagrams can be used to visualize relativistic effects, such as why different observers perceive differently where and when events occur.

In physics and chemistry, the law of conservation of energy states that the total energy of an isolated system remains constant; it is said to be conserved over time. This law, first proposed and tested by Émilie du Châtelet, means that energy can neither be created nor destroyed; rather, it can only be transformed or transferred from one form to another. For instance, chemical energy is converted to kinetic energy when a stick of dynamite explodes. If one adds up all forms of energy that were released in the explosion, such as the kinetic energy and potential energy of the pieces, as well as heat and sound, one will get the exact decrease of chemical energy in the combustion of the dynamite. Classically, conservation of energy was distinct from conservation of mass; however, special relativity showed that mass is related to energy and vice versa by E = mc2, and science now takes the view that mass-energy as a whole is conserved. Theoretically, this implies that any object with mass can itself be converted to pure energy, and vice versa, though this is believed to be possible only under the most extreme of physical conditions, such as likely existed in the universe very shortly after the Big Bang or when black holes emit Hawking radiation.

Principle of relativity Physics principle stating that the laws of physics must be the same in all reference frames

In physics, the principle of relativity is the requirement that the equations describing the laws of physics have the same form in all admissible frames of reference.

Galilean invariance or Galilean relativity states that the laws of motion are the same in all inertial frames. Galileo Galilei first described this principle in 1632 in his Dialogue Concerning the Two Chief World Systems using the example of a ship travelling at constant velocity, without rocking, on a smooth sea; any observer below the deck would not be able to tell whether the ship was moving or stationary.

Introduction to gauge theory

A gauge theory is a type of theory in physics. The word gauge means a measurement, a thickness, an in-between distance, or a resulting number of units per certain parameter. Modern theories describe physical forces in terms of fields, e.g., the electromagnetic field, the gravitational field, and fields that describe forces between the elementary particles. A general feature of these field theories is that the fundamental fields cannot be directly measured; however, some associated quantities can be measured, such as charges, energies, and velocities. For example, say you cannot measure the diameter of a lead ball, but you can determine how many lead balls, which are equal in every way, are required to make a pound. Using the number of balls, the elemental mass of lead, and the formula for calculating the volume of a sphere from its diameter, one could indirectly determine the diameter of a single lead ball. In field theories, different configurations of the unobservable fields can result in identical observable quantities. A transformation from one such field configuration to another is called a gauge transformation; the lack of change in the measurable quantities, despite the field being transformed, is a property called gauge invariance. For example, if you could measure the color of lead balls and discover that when you change the color, you still fit the same number of balls in a pound, the property of "color" would show gauge invariance. Since any kind of invariance under a field transformation is considered a symmetry, gauge invariance is sometimes called gauge symmetry. Generally, any theory that has the property of gauge invariance is considered a gauge theory.

A continuity equation in physics is an equation that describes the transport of some quantity. It is particularly simple and powerful when applied to a conserved quantity, but it can be generalized to apply to any extensive quantity. Since mass, energy, momentum, electric charge and other natural quantities are conserved under their respective appropriate conditions, a variety of physical phenomena may be described using continuity equations.

The word mass has two meanings in special relativity: invariant mass is an invariant quantity which is the same for all observers in all reference frames; while the relativistic mass is dependent on the velocity of the observer. According to the concept of mass–energy equivalence, invariant mass is equivalent to rest energy, while relativistic mass is equivalent to relativistic energy.

In relativistic physics, Lorentz symmetry, named after Hendrik Lorentz, is an equivalence of observation or observational symmetry due to special relativity implying that the laws of physics stay the same for all observers that are moving with respect to one another within an inertial frame. It has also been described as "the feature of nature that says experimental results are independent of the orientation or the boost velocity of the laboratory through space".

In theoretical physics, general covariance, also known as diffeomorphism covariance or general invariance, consists of the invariance of the form of physical laws under arbitrary differentiable coordinate transformations. The essential idea is that coordinates do not exist a priori in nature, but are only artifices used in describing nature, and hence should play no role in the formulation of fundamental physical laws.

The Abraham–Minkowski controversy is a physics debate concerning electromagnetic momentum within dielectric media. Traditionally, it is argued that in the presence of matter the electromagnetic stress-energy tensor by itself is not conserved (divergenceless). Only the total stress-energy tensor carries unambiguous physical significance, and how one apportions it between an "electromagnetic" part and a "matter" part depends on context and convenience. In other words, the electromagnetic part and the matter part in the total momentum can be arbitrarily distributed as long as the total momentum is kept the same. There are two incompatible equations to describe momentum transfer between matter and electromagnetic fields. These two equations were first suggested by Hermann Minkowski (1908) and Max Abraham (1909), from which the controversy's name derives. Both were claimed to be supported by experimental data. Theoretically, it is usually argued that Abraham's version of momentum "does indeed represent the true momentum density of electromagnetic fields" for electromagnetic waves, while Minkowski's version of momentum is "pseudomomentum" or "wave momentum".

In physics, Albert Einstein's 1905 theory of special relativity is derived from first principles now called the postulates of special relativity. Einstein's formulation only uses two postulates, though his derivation implies a few more assumptions.

Symmetry (physics) Feature of a system that is preserved under some transformation

In physics, a symmetry of a physical system is a physical or mathematical feature of the system that is preserved or remains unchanged under some transformation.

In physics, a scalar or scalar quantity is a quantity that can be described by a single element of a number field, such as a real number, often accompanied by units of measurement, as in "10 cm". A scalar has magnitude and possibly a sign but no other characteristics. This is in contrast to vectors, tensors, etc. which are described by several numbers that characterize their magnitude, direction, and so on.

In physics, the principle of covariance emphasizes the formulation of physical laws using only those physical quantities the measurements of which the observers in different frames of reference could unambiguously correlate.

Covariance group

In physics, a covariance group is a group of coordinate transformations between frames of reference. A frame of reference provides a set of coordinates for an observer moving with that frame to make measurements and define physical quantities. The covariance principle states the laws of physics should transform from one frame to another covariantly, that is, according to a representation of the covariance group.

Gauge theory Physical theory with fields invariant under the action of local "gauge" Lie groups

In physics, a gauge theory is a type of field theory in which the Lagrangian does not change under local transformations from certain Lie groups.

Time translation symmetry Hypothesis that physics experiments will behave the same regardless of when they are conducted

Time translation symmetry or temporal translation symmetry (TTS) is a mathematical transformation in physics that moves the times of events through a common interval. Time translation symmetry is the hypothesis that the laws of physics are unchanged, under such a transformation. Time translation symmetry is a rigorous way to formulate the idea that the laws of physics are the same throughout history. Time translation symmetry is closely connected, via the Noether theorem, to conservation of energy. In mathematics, the set of all time translations on a given system form a Lie group.

References

  1. French, A.P. (1968). Special Relativity. W. W. Norton & Company. ISBN   0-393-09793-5.