Generalized gamma distribution

Last updated
Generalized gamma
Probability density function
GenGamma.png
Parameters (scale),
Support
PDF
CDF
Mean
Mode
Variance
Entropy

The generalized gamma distribution is a continuous probability distribution with two shape parameters (and a scale parameter). It is a generalization of the gamma distribution which has one shape parameter (and a scale parameter). Since many distributions commonly used for parametric models in survival analysis (such as the exponential distribution, the Weibull distribution and the gamma distribution) are special cases of the generalized gamma, it is sometimes used to determine which parametric model is appropriate for a given set of data. [1] Another example is the half-normal distribution.

Contents

Characteristics

The generalized gamma distribution has two shape parameters, and , and a scale parameter, . For non-negative x from a generalized gamma distribution, the probability density function is [2]

where denotes the gamma function.

The cumulative distribution function is

where denotes the lower incomplete gamma function, and denotes the regularized lower incomplete gamma function.

The quantile function can be found by noting that where is the cumulative distribution function of the gamma distribution with parameters and . The quantile function is then given by inverting using known relations about inverse of composite functions, yielding:

with being the quantile function for a gamma distribution with .

Alternative parameterisations of this distribution are sometimes used; for example with the substitution α =   d/p. [3] In addition, a shift parameter can be added, so the domain of x starts at some value other than zero. [3] If the restrictions on the signs of a, d and p are also lifted (but α = d/p remains positive), this gives a distribution called the Amoroso distribution, after the Italian mathematician and economist Luigi Amoroso who described it in 1925. [4]

Moments

If X has a generalized gamma distribution as above, then [3]

Properties

Denote GG(a,d,p) as the generalized gamma distribution of parameters a, d, p. Then, given and two positive real numbers, if , then and .

Kullback-Leibler divergence

If and are the probability density functions of two generalized gamma distributions, then their Kullback-Leibler divergence is given by

where is the digamma function. [5]

Software implementation

In the R programming language, there are a few packages that include functions for fitting and generating generalized gamma distributions. The gamlss package in R allows for fitting and generating many different distribution families including generalized gamma (family=GG). Other options in R, implemented in the package flexsurv, include the function dgengamma, with parameterization: , , , and in the package ggamma with parametrisation: , , .

In the python programming language, it is implemented in the SciPy package, with parametrisation: , , and scale of 1.

See also

Related Research Articles

<span class="mw-page-title-main">Exponential distribution</span> Probability distribution

In probability theory and statistics, the exponential distribution or negative exponential distribution is the probability distribution of the distance between events in a Poisson point process, i.e., a process in which events occur continuously and independently at a constant average rate; the distance parameter could be any meaningful mono-dimensional measure of the process, such as time between production errors, or length along a roll of fabric in the weaving manufacturing process. It is a particular case of the gamma distribution. It is the continuous analogue of the geometric distribution, and it has the key property of being memoryless. In addition to being used for the analysis of Poisson point processes it is found in various other contexts.

<span class="mw-page-title-main">Pareto distribution</span> Probability distribution

The Pareto distribution, named after the Italian civil engineer, economist, and sociologist Vilfredo Pareto, is a power-law probability distribution that is used in description of social, quality control, scientific, geophysical, actuarial, and many other types of observable phenomena; the principle originally applied to describing the distribution of wealth in a society, fitting the trend that a large portion of wealth is held by a small fraction of the population. The Pareto principle or "80-20 rule" stating that 80% of outcomes are due to 20% of causes was named in honour of Pareto, but the concepts are distinct, and only Pareto distributions with shape value of log45 ≈ 1.16 precisely reflect it. Empirical observation has shown that this 80-20 distribution fits a wide range of cases, including natural phenomena and human activities.

<span class="mw-page-title-main">Weibull distribution</span> Continuous probability distribution

In probability theory and statistics, the Weibull distribution is a continuous probability distribution. It models a broad range of random variables, largely in the nature of a time to failure or time between events. Examples are maximum one-day rainfalls and the time a user spends on a web page.

<span class="mw-page-title-main">Gamma distribution</span> Probability distribution

In probability theory and statistics, the gamma distribution is a versatile two-parameter family of continuous probability distributions. The exponential distribution, Erlang distribution, and chi-squared distribution are special cases of the gamma distribution. There are two equivalent parameterizations in common use:

  1. With a shape parameter k and a scale parameter θ
  2. With a shape parameter and an inverse scale parameter , called a rate parameter.
<span class="mw-page-title-main">Gumbel distribution</span> Particular case of the generalized extreme value distribution

In probability theory and statistics, the Gumbel distribution is used to model the distribution of the maximum of a number of samples of various distributions.

<span class="mw-page-title-main">Logistic distribution</span> Continuous probability distribution

In probability theory and statistics, the logistic distribution is a continuous probability distribution. Its cumulative distribution function is the logistic function, which appears in logistic regression and feedforward neural networks. It resembles the normal distribution in shape but has heavier tails. The logistic distribution is a special case of the Tukey lambda distribution.

<span class="mw-page-title-main">Dirichlet distribution</span> Probability distribution

In probability and statistics, the Dirichlet distribution, often denoted , is a family of continuous multivariate probability distributions parameterized by a vector of positive reals. It is a multivariate generalization of the beta distribution, hence its alternative name of multivariate beta distribution (MBD). Dirichlet distributions are commonly used as prior distributions in Bayesian statistics, and in fact, the Dirichlet distribution is the conjugate prior of the categorical distribution and multinomial distribution.

<span class="mw-page-title-main">Stable distribution</span> Distribution of variables which satisfies a stability property under linear combinations

In probability theory, a distribution is said to be stable if a linear combination of two independent random variables with this distribution has the same distribution, up to location and scale parameters. A random variable is said to be stable if its distribution is stable. The stable distribution family is also sometimes referred to as the Lévy alpha-stable distribution, after Paul Lévy, the first mathematician to have studied it.

In probability theory and statistics, the generalized extreme value (GEV) distribution is a family of continuous probability distributions developed within extreme value theory to combine the Gumbel, Fréchet and Weibull families also known as type I, II and III extreme value distributions. By the extreme value theorem the GEV distribution is the only possible limit distribution of properly normalized maxima of a sequence of independent and identically distributed random variables. that a limit distribution needs to exist, which requires regularity conditions on the tail of the distribution. Despite this, the GEV distribution is often used as an approximation to model the maxima of long (finite) sequences of random variables.

<span class="mw-page-title-main">Inverse-gamma distribution</span> Two-parameter family of continuous probability distributions

In probability theory and statistics, the inverse gamma distribution is a two-parameter family of continuous probability distributions on the positive real line, which is the distribution of the reciprocal of a variable distributed according to the gamma distribution.

<span class="mw-page-title-main">Kumaraswamy distribution</span>

In probability and statistics, the Kumaraswamy's double bounded distribution is a family of continuous probability distributions defined on the interval (0,1). It is similar to the beta distribution, but much simpler to use especially in simulation studies since its probability density function, cumulative distribution function and quantile functions can be expressed in closed form. This distribution was originally proposed by Poondi Kumaraswamy for variables that are lower and upper bounded with a zero-inflation. This was extended to inflations at both extremes [0,1] in later work with S. G. Fletcher.

<span class="mw-page-title-main">Beta prime distribution</span> Probability distribution

In probability theory and statistics, the beta prime distribution is an absolutely continuous probability distribution. If has a beta distribution, then the odds has a beta prime distribution.

Expected shortfall (ES) is a risk measure—a concept used in the field of financial risk measurement to evaluate the market risk or credit risk of a portfolio. The "expected shortfall at q% level" is the expected return on the portfolio in the worst of cases. ES is an alternative to value at risk that is more sensitive to the shape of the tail of the loss distribution.

<span class="mw-page-title-main">Generalized Pareto distribution</span> Family of probability distributions often used to model tails or extreme values

In statistics, the generalized Pareto distribution (GPD) is a family of continuous probability distributions. It is often used to model the tails of another distribution. It is specified by three parameters: location , scale , and shape . Sometimes it is specified by only scale and shape and sometimes only by its shape parameter. Some references give the shape parameter as .

A ratio distribution is a probability distribution constructed as the distribution of the ratio of random variables having two other known distributions. Given two random variables X and Y, the distribution of the random variable Z that is formed as the ratio Z = X/Y is a ratio distribution.

<span class="mw-page-title-main">Quantile function</span> Statistical function that defines the quantiles of a probability distribution

In probability and statistics, the quantile function outputs the value of a random variable such that its probability is less than or equal to an input probability value. Intuitively, the quantile function associates with a range at and below a probability input the likelihood that a random variable is realized in that range for some probability distribution. It is also called the percentile function, percent-point function, inverse cumulative distribution function or inverse distribution function.

<span class="mw-page-title-main">Fréchet distribution</span> Continuous probability distribution

The Fréchet distribution, also known as inverse Weibull distribution, is a special case of the generalized extreme value distribution. It has the cumulative distribution function

In financial mathematics, tail value at risk (TVaR), also known as tail conditional expectation (TCE) or conditional tail expectation (CTE), is a risk measure associated with the more general value at risk. It quantifies the expected value of the loss given that an event outside a given probability level has occurred.

In mathematics, the Fox–Wright function (also known as Fox–Wright Psi function, not to be confused with Wright Omega function) is a generalisation of the generalised hypergeometric function pFq(z) based on ideas of Charles Fox (1928) and E. Maitland Wright (1935):

<span class="mw-page-title-main">Kaniadakis Weibull distribution</span> Continuous probability distribution

The Kaniadakis Weibull distribution is a probability distribution arising as a generalization of the Weibull distribution. It is one example of a Kaniadakis κ-distribution. The κ-Weibull distribution has been adopted successfully for describing a wide variety of complex systems in seismology, economy, epidemiology, among many others.

References

  1. Box-Steffensmeier, Janet M.; Jones, Bradford S. (2004) Event History Modeling: A Guide for Social Scientists. Cambridge University Press. ISBN   0-521-54673-7 (pp. 41-43)
  2. Stacy, E.W. (1962). "A Generalization of the Gamma Distribution." Annals of Mathematical Statistics 33(3): 1187-1192. JSTOR   2237889
  3. 1 2 3 Johnson, N.L.; Kotz, S; Balakrishnan, N. (1994) Continuous Univariate Distributions, Volume 1, 2nd Edition. Wiley. ISBN   0-471-58495-9 (Section 17.8.7)
  4. Gavin E. Crooks (2010), The Amoroso Distribution, Technical Note, Lawrence Berkeley National Laboratory.
  5. C. Bauckhage (2014), Computing the Kullback-Leibler Divergence between two Generalized Gamma Distributions, arXiv : 1401.6853.