(a,b,0) class of distributions

Last updated

In probability theory, a member of the (a, b, 0) class of distributions is any distribution of a discrete random variable N whose values are nonnegative integers whose probability mass function satisfies the recurrence formula

Contents

for some real numbers a and b, where .

The (a,b,0) class of distributions is also known as the Panjer, [1] [2] the Poisson-type or the Katz family of distributions, [3] [4] and may be retrieved through the Conway–Maxwell–Poisson distribution.

Only the Poisson, binomial and negative binomial distributions satisfy the full form of this relationship. These are also the three discrete distributions among the six members of the natural exponential family with quadratic variance functions (NEF–QVF).

More general distributions can be defined by fixing some initial values of pj and applying the recursion to define subsequent values. This can be of use in fitting distributions to empirical data. However, some further well-known distributions are available if the recursion above need only hold for a restricted range of values of k: [5] for example the logarithmic distribution and the discrete uniform distribution.

The (a, b, 0) class of distributions has important applications in actuarial science in the context of loss models. [6]

Properties

Sundt [7] proved that only the binomial distribution, the Poisson distribution and the negative binomial distribution belong to this class of distributions, with each distribution being represented by a different sign of a. Furthermore, it was shown by Fackler [2] that there is a universal formula for all three distributions, called the (united) Panjer distribution.

The more usual parameters of these distributions are determined by both a and b. The properties of these distributions in relation to the present class of distributions are summarised in the following table. Note that denotes the probability generating function.

Distribution
Binomial
Poisson
Negative binomial
Panjer distribution

Note that the Panjer distribution reduces to the Poisson distribution in the limit case ; it coincides with the negative binomial distribution for positive, finite real numbers , and it equals the binomial distribution for negative integers .

Plotting

An easy way to quickly determine whether a given sample was taken from a distribution from the (a,b,0) class is by graphing the ratio of two consecutive observed data (multiplied by a constant) against the x-axis.

By multiplying both sides of the recursive formula by , you get

which shows that the left side is obviously a linear function of . When using a sample of data, an approximation of the 's need to be done. If represents the number of observations having the value , then is an unbiased estimator of the true .

Therefore, if a linear trend is seen, then it can be assumed that the data is taken from an (a,b,0) distribution. Moreover, the slope of the function would be the parameter , while the ordinate at the origin would be .

See also


Related Research Articles

<span class="mw-page-title-main">Binomial distribution</span> Probability distribution

In probability theory and statistics, the binomial distribution with parameters n and p is the discrete probability distribution of the number of successes in a sequence of n independent experiments, each asking a yes–no question, and each with its own Boolean-valued outcome: success or failure. A single success/failure experiment is also called a Bernoulli trial or Bernoulli experiment, and a sequence of outcomes is called a Bernoulli process; for a single trial, i.e., n = 1, the binomial distribution is a Bernoulli distribution. The binomial distribution is the basis for the popular binomial test of statistical significance.

<span class="mw-page-title-main">Negative binomial distribution</span> Probability distribution

In probability theory and statistics, the negative binomial distribution is a discrete probability distribution that models the number of failures in a sequence of independent and identically distributed Bernoulli trials before a specified (non-random) number of successes occurs. For example, we can define rolling a 6 on a die as a success, and rolling any other number as a failure, and ask how many failure rolls will occur before we see the third success. In such a case, the probability distribution of the number of failures that appear will be a negative binomial distribution.

<span class="mw-page-title-main">Geometric distribution</span> Probability distribution

In probability theory and statistics, the geometric distribution is either one of two discrete probability distributions:

In probability theory, the factorial moment is a mathematical quantity defined as the expectation or average of the falling factorial of a random variable. Factorial moments are useful for studying non-negative integer-valued random variables, and arise in the use of probability-generating functions to derive the moments of discrete random variables.

In Bayesian probability theory, if the posterior distribution is in the same probability distribution family as the prior probability distribution , the prior and posterior are then called conjugate distributions, and the prior is called a conjugate prior for the likelihood function .

In probability theory, a compound Poisson distribution is the probability distribution of the sum of a number of independent identically-distributed random variables, where the number of terms to be added is itself a Poisson-distributed variable. The result can be either a continuous or a discrete distribution.

<span class="mw-page-title-main">Logarithmic distribution</span> Discrete probability distribution

In probability and statistics, the logarithmic distribution is a discrete probability distribution derived from the Maclaurin series expansion

In statistics, Poisson regression is a generalized linear model form of regression analysis used to model count data and contingency tables. Poisson regression assumes the response variable Y has a Poisson distribution, and assumes the logarithm of its expected value can be modeled by a linear combination of unknown parameters. A Poisson regression model is sometimes known as a log-linear model, especially when used to model contingency tables.

The Panjer recursion is an algorithm to compute the probability distribution approximation of a compound random variable where both and are random variables and of special types. In more general cases the distribution of S is a compound distribution. The recursion for the special cases considered was introduced in a paper by Harry Panjer. It is heavily used in actuarial science.

In actuarial science and applied probability, ruin theory uses mathematical models to describe an insurer's vulnerability to insolvency/ruin. In such models key quantities of interest are the probability of ruin, distribution of surplus immediately prior to ruin and deficit at time of ruin.

In probability and statistics the extended negative binomial distribution is a discrete probability distribution extending the negative binomial distribution. It is a truncated version of the negative binomial distribution for which estimation methods have been studied.

<span class="mw-page-title-main">Poisson distribution</span> Discrete probability distribution

In probability theory and statistics, the Poisson distribution is a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time or space if these events occur with a known constant mean rate and independently of the time since the last event. It is named after French mathematician Siméon Denis Poisson. The Poisson distribution can also be used for the number of events in other specified interval types such as distance, area, or volume. It plays an important role for discrete-stable distributions.

In probability theory and statistics, the Poisson binomial distribution is the discrete probability distribution of a sum of independent Bernoulli trials that are not necessarily identically distributed. The concept is named after Siméon Denis Poisson.

In probability theory, a beta negative binomial distribution is the probability distribution of a discrete random variable  equal to the number of failures needed to get successes in a sequence of independent Bernoulli trials. The probability of success on each trial stays constant within any given experiment but varies across different experiments following a beta distribution. Thus the distribution is a compound probability distribution.

<span class="mw-page-title-main">Delaporte distribution</span>

The Delaporte distribution is a discrete probability distribution that has received attention in actuarial science. It can be defined using the convolution of a negative binomial distribution with a Poisson distribution. Just as the negative binomial distribution can be viewed as a Poisson distribution where the mean parameter is itself a random variable with a gamma distribution, the Delaporte distribution can be viewed as a compound distribution based on a Poisson distribution, where there are two components to the mean parameter: a fixed component, which has the parameter, and a gamma-distributed variable component, which has the and parameters. The distribution is named for Pierre Delaporte, who analyzed it in relation to automobile accident claim counts in 1959, although it appeared in a different form as early as 1934 in a paper by Rolf von Lüders, where it was called the Formel II distribution.

Taylor's power law is an empirical law in ecology that relates the variance of the number of individuals of a species per unit area of habitat to the corresponding mean by a power law relationship. It is named after the ecologist who first proposed it in 1961, Lionel Roy Taylor (1924–2007). Taylor's original name for this relationship was the law of the mean. The name Taylor's law was coined by Southwood in 1966.

In statistics, a zero-inflated model is a statistical model based on a zero-inflated probability distribution, i.e. a distribution that allows for frequent zero-valued observations.

In probability theory and statistics, the discrete Weibull distribution is the discrete variant of the Weibull distribution. The Discrete Weibull Distribution, first introduced by Toshio Nakagawa and Shunji Osaki, is a discrete analog of the continuous Weibull distribution, predominantly used in reliability engineering. It is particularly applicable for modeling failure data measured in discrete units like cycles or shocks. This distribution provides a versatile tool for analyzing scenarios where the timing of events is counted in distinct intervals, making it distinctively useful in fields that deal with discrete data patterns and reliability analysis.

Poisson-type random measures are a family of three random counting measures which are closed under restriction to a subspace, i.e. closed under thinning. They are the only distributions in the canonical non-negative power series family of distributions to possess this property and include the Poisson distribution, negative binomial distribution, and binomial distribution. The PT family of distributions is also known as the Katz family of distributions, the Panjer or (a,b,0) class of distributions and may be retrieved through the Conway–Maxwell–Poisson distribution.

A mixed Poisson distribution is a univariate discrete probability distribution in stochastics. It results from assuming that the conditional distribution of a random variable, given the value of the rate parameter, is a Poisson distribution, and that the rate parameter itself is considered as a random variable. Hence it is a special case of a compound probability distribution. Mixed Poisson distributions can be found in actuarial mathematics as a general approach for the distribution of the number of claims and is also examined as an epidemiological model. It should not be confused with compound Poisson distribution or compound Poisson process.

References

  1. Panjer, Harry H. (1981). "Recursive Evaluation of a Family of Compound Distributions" (PDF). ASTIN Bulletin. 12 (1): 22–26.
  2. 1 2 Fackler, Michael (2009). "Panjer class united - one formula for the Poisson, Binomial and Negative Binomial distribution" (PDF). ASTIN Colloquium. International Actuarial Association.
  3. Katz, Leo (1965). Ganapati Patil (ed.). Unified treatment of a broad class of discrete probability distributions. Classical and Contagious Discrete Distributions. Pergamon Press, Oxford. pp. 175–182.
  4. Gathy, Maude; Lefèvre, Claude (2010). "On the Lagrangian Katz family of distributions as a claim frequency modelDistributions". Insurance: Mathematics and Economics. 47 (1): 78–83. doi:10.1016/j.insmatheco.2010.03.010.
  5. Hess, Klaus Th.; Liewald, Anett; Schmidt, Klaus D. (2002). "An extension of Panjer's recursion" (PDF). ASTIN Bulletin. 32 (2): 283–297. doi: 10.2143/AST.32.2.1030 . Archived (PDF) from the original on 2009-07-11. Retrieved 2009-06-18.
  6. Klugman, Stuart; Panjer, Harry; Gordon, Willmot (2004). Loss Models: From Data to Decisions. Series in Probability and Statistics (2nd ed.). New Jersey: Wiley. ISBN   978-0-471-21577-6.
  7. Sundt, Bjørn; Jewell, William S. (1981). "Further results on recursive evaluation of compound distributions" (PDF). ASTIN Bulletin. 12 (1): 27–39. doi: 10.1017/S0515036100006802 .