Average absolute deviation

Last updated

The average absolute deviation (or mean absolute deviation (MAD)) about any certain point (or 'avg. absolute deviation' only) of a data set is the average of the absolute deviations or the positive difference of the given data and that certain value (generally central values). It is a summary statistic of statistical dispersion or variability. In the general form, the central point can be the mean, median, mode, or the result of any other measure of central tendency or any random data point related to the given data set. The absolute values of the difference, between the data points and their central tendency, are totaled and divided by the number of data points.

In colloquial language, an average is a single number taken as representative of a list of numbers. Different concepts of average are used in different contexts. Often "average" refers to the arithmetic mean, the sum of the numbers divided by how many numbers are being averaged. In statistics, mean, median, and mode are all known as measures of central tendency, and in colloquial usage any of these might be called an average value.

Absolute value magnitude of the number on the real number line; (of a real number x) non-negative value of x without regard to its sign

In mathematics, the absolute value or modulus|x| of a real number x is the non-negative value of x without regard to its sign. Namely, |x| = x for a positive x, |x| = −x for a negative x, and |0| = 0. For example, the absolute value of 3 is 3, and the absolute value of −3 is also 3. The absolute value of a number may be thought of as its distance from zero.

In mathematics and statistics, deviation is a measure of difference between the observed value of a variable and some other value, often that variable's mean. The sign of the deviation reports the direction of that difference. The magnitude of the value indicates the size of the difference.

Contents

Measures of dispersion

Several measures of statistical dispersion are defined in terms of the absolute deviation. The term "average absolute deviation" does not uniquely identify a measure of statistical dispersion, as there are several measures that can be used to measure absolute deviations, and there are several measures of central tendency that can be used as well. Thus, to uniquely identify the absolute deviation it is necessary to specify both the measure of deviation and the measure of central tendency. Unfortunately, the statistical literature has not yet adopted a standard notation, as both the mean absolute deviation around the mean and the median absolute deviation around the median have been denoted by their initials "MAD" in the literature, which may lead to confusion, since in general, they may have values considerably different from each other.

Statistical dispersion general term for the value describing how spread out the data are

In statistics, dispersion is the extent to which a distribution is stretched or squeezed. Common examples of measures of statistical dispersion are the variance, standard deviation, and interquartile range.

In statistics, a central tendency is a central or typical value for a probability distribution. It may also be called a center or location of the distribution. Colloquially, measures of central tendency are often called averages. The term central tendency dates from the late 1920s.

Mean absolute deviation around a central point

The mean absolute deviation of a set {x1, x2, ..., xn} is

The choice of measure of central tendency, , has a marked effect on the value of the mean deviation. For example, for the data set {2, 2, 3, 4, 14}:

Measure of central tendency Mean absolute deviation
Mean = 5
Median = 3
Mode = 2

The mean absolute deviation from the median is less than or equal to the mean absolute deviation from the mean. In fact, the mean absolute deviation from the median is always less than or equal to the mean absolute deviation from any other fixed number.

The mean absolute deviation from the mean is less than or equal to the standard deviation; one way of proving this relies on Jensen's inequality.

Standard deviation dispersion of the values of a random variable around its expected value

In statistics, the standard deviation is a measure that is used to quantify the amount of variation or dispersion of a set of data values. A low standard deviation indicates that the data points tend to be close to the mean of the set, while a high standard deviation indicates that the data points are spread out over a wider range of values.

Jensens inequality Theorem of convex functions

In mathematics, Jensen's inequality, named after the Danish mathematician Johan Jensen, relates the value of a convex function of an integral to the integral of the convex function. It was proven by Jensen in 1906. Given its generality, the inequality appears in many forms depending on the context, some of which are presented below. In its simplest form the inequality states that the convex transformation of a mean is less than or equal to the mean applied after convex transformation; it is a simple corollary that the opposite is true of concave transformations.

For the normal distribution, the ratio of mean absolute deviation to standard deviation is . Thus if X is a normally distributed random variable with expected value 0 then, see Geary (1935): [1]

Normal distribution probability distribution

In probability theory, the normaldistribution is a very common continuous probability distribution. Normal distributions are important in statistics and are often used in the natural and social sciences to represent real-valued random variables whose distributions are not known. A random variable with a Gaussian distribution is said to be normally distributed and is called a normal deviate.

In other words, for a normal distribution, mean absolute deviation is about 0.8 times the standard deviation. However, in-sample measurements deliver values of the ratio of mean average deviation / standard deviation for a given Gaussian sample n with the following bounds: , with a bias for small n. [2]

Mean absolute deviation around the mean

The mean absolute deviation (MAD), also referred to as the "mean deviation" or sometimes "average absolute deviation", is the mean of the data's absolute deviations around the data's mean: the average (absolute) distance from the mean. "Average absolute deviation" can refer to either this usage, or to the general form with respect to a specified central point (see above).

MAD has been proposed to be used in place of standard deviation since it corresponds better to real life. [3] Because the MAD is a simpler measure of variability than the standard deviation, it can be useful in school teaching. [4] [5]

This method's forecast accuracy is very closely related to the mean squared error (MSE) method which is just the average squared error of the forecasts. Although these methods are very closely related, MAD is more commonly used because it is both easier to compute (avoiding the need for squaring) [6] and easier to understand. [7]

Mean absolute deviation around the median

Mean absolute deviation around the median (MAD median) offers a direct measure of the scale of a random variable around its median

This is the maximum likelihood estimator of the scale parameter of the Laplace distribution. For the normal distribution we have . Since the median minimizes the average absolute distance, we have . By using the general dispersion function, Habib (2011) defined MAD about median as

where the indicator function is

This representation allows for obtaining MAD median correlation coefficients; [8]

Median absolute deviation around a central point

Median absolute deviation around the mean

In principle the mean could be taken as the central point for the median absolute deviation, but more often the median value is taken instead.

Median absolute deviation around the median

The median absolute deviation (also MAD) is the median of the absolute deviation from the median. It is a robust estimator of dispersion.

For the example {2, 2, 3, 4, 14}: 3 is the median, so the absolute deviations from the median are {1, 1, 0, 1, 11} (reordered as {0, 1, 1, 1, 11}) with a median of 1, in this case unaffected by the value of the outlier 14, so the median absolute deviation (also called MAD) is 1.

Maximum absolute deviation

The maximum absolute deviation around an arbitrary point is the maximum of the absolute deviations of a sample from that point. While not strictly a measure of central tendency, the maximum absolute deviation can be found using the formula for the average absolute deviation as above with , where is the sample maximum.

Minimization

The measures of statistical dispersion derived from absolute deviation characterize various measures of central tendency as minimizing dispersion: The median is the measure of central tendency most associated with the absolute deviation. Some location parameters can be compared as follows:

Estimation

Graph 01.jpg

The mean absolute deviation of a sample is a biased estimator of the mean absolute deviation of the population. In order for the absolute deviation to be an unbiased estimator, the expected value (average) of all the sample absolute deviations must equal the population absolute deviation. However, it does not. For the population 1,2,3 both the population absolute deviation about the median and the population absolute deviation about the mean are 2/3. The average of all the sample absolute deviations about the mean of size 3 that can be drawn from the population is 44/81, while the average of all the sample absolute deviations about the median is 4/9. Therefore, the absolute deviation is a biased estimator.

However, this argument is based on the notion of mean-unbiasedness. Each measure of location has its own form of unbiasedness (see entry on biased estimator). The relevant form of unbiasedness here is median unbiasedness.

Graph 02.jpg

See also

Related Research Articles

In mathematics and statistics, the arithmetic mean, or simply the mean or average when the context is clear, is the sum of a collection of numbers divided by the count of numbers in the collection. The collection is often a set of results of an experiment or an observational study, or frequently a set of results from a survey. The term "arithmetic mean" is preferred in some contexts in mathematics and statistics because it helps distinguish it from other means, such as the geometric mean and the harmonic mean.

In statistics, an estimator is a rule for calculating an estimate of a given quantity based on observed data: thus the rule, the quantity of interest and its result are distinguished.

Median quantile

The median is the value separating the higher half from the lower half of a data sample. For a data set, it may be thought of as the "middle" value. For example, in the data set {1, 3, 3, 6, 7, 8, 9}, the median is 6, the fourth largest, and also the fourth smallest, number in the sample. For a continuous probability distribution, the median is the value such that a number is equally likely to fall above or below it.

In statistics, the mean squared error (MSE) or mean squared deviation (MSD) of an estimator measures the average of the squares of the errors—that is, the average squared difference between the estimated values and the actual value. MSE is a risk function, corresponding to the expected value of the squared error loss. The fact that MSE is almost always strictly positive is because of randomness or because the estimator does not account for information that could produce a more accurate estimate.

Standard error statistical property

The standard error (SE) of a statistic is the standard deviation of its sampling distribution or an estimate of that standard deviation. If the parameter or the statistic is the mean, it is called the standard error of the mean (SEM).

In probability theory and statistics, the coefficient of variation (CV), also known as relative standard deviation (RSD), is a standardized measure of dispersion of a probability distribution or frequency distribution. It is often expressed as a percentage, and is defined as the ratio of the standard deviation to the mean . The CV or RSD is widely used in analytical chemistry to express the precision and repeatability of an assay. It is also commonly used in fields such as engineering or physics when doing quality assurance studies and ANOVA gauge R&R. In addition, CV is utilized by economists and investors in economic models and in determining the volatility of a security.

Most of the terms listed in Wikipedia glossaries are already defined and explained within Wikipedia itself. However, glossaries like this one are useful for looking up, comparing and reviewing large numbers of terms together. You can help enhance this page by adding new terms or writing definitions for existing ones.

In statistics, the mid-range or mid-extreme of a set of statistical data values is the arithmetic mean of the maximum and minimum values in a data set, defined as:

Robust statistics are statistics with good performance for data drawn from a wide range of probability distributions, especially for distributions that are not normal. Robust statistical methods have been developed for many common problems, such as estimating location, scale, and regression parameters. One motivation is to produce statistical methods that are not unduly affected by outliers. Another motivation is to provide methods with good performance when there are small departures from parametric distribution. For example, robust methods work well for mixtures of two normal distributions with different standard-deviations; under this model, non-robust methods like a t-test work poorly.

The mean absolute difference (univariate) is a measure of statistical dispersion equal to the average absolute difference of two independent values drawn from a probability distribution. A related statistic is the relative mean absolute difference, which is the mean absolute difference divided by the arithmetic mean, and equal to twice the Gini coefficient. The mean absolute difference is also known as the absolute mean difference and the Gini mean difference (GMD). The mean absolute difference is sometimes denoted by Δ or as MD.

In statistics, the bias of an estimator is the difference between this estimator's expected value and the true value of the parameter being estimated. An estimator or decision rule with zero bias is called unbiased. In statistics, "bias" is an objective property of an estimator. Unlike the ordinary English use of the term "bias", it is not pejorative even though it's not a desired property.

The root-mean-square deviation (RMSD) or root-mean-square error (RMSE) is a frequently used measure of the differences between values predicted by a model or an estimator and the values observed. The RMSD represents the square root of the second sample moment of the differences between predicted values and observed values or the quadratic mean of these differences. These deviations are called residuals when the calculations are performed over the data sample that was used for estimation and are called errors when computed out-of-sample. The RMSD serves to aggregate the magnitudes of the errors in predictions for various times into a single measure of predictive power. RMSD is a measure of accuracy, to compare forecasting errors of different models for a particular dataset and not between datasets, as it is scale-dependent.

In statistics, the median absolute deviation (MAD) is a robust measure of the variability of a univariate sample of quantitative data. It can also refer to the population parameter that is estimated by the MAD calculated from a sample.

L-estimator

In statistics, an L-estimator is an estimator which is an L-statistic – a linear combination of order statistics of the measurements. This can be as little as a single point, as in the median, or as many as all points, as in the mean.

In statistics, a trimmed estimator is an estimator derived from another estimator by excluding some of the extreme values, a process called truncation. This is generally done to obtain a more robust statistic, and the extreme values are considered outliers. Trimmed estimators also often have higher efficiency for mixture distributions and heavy-tailed distributions than the corresponding untrimmed estimator, at the cost of lower efficiency for other distributions, such as the normal distribution.

In statistics, a robust measure of scale is a robust statistic that quantifies the statistical dispersion in a set of numerical data. The most common such statistics are the interquartile range (IQR) and the median absolute deviation (MAD). These are contrasted with conventional measures of scale, such as sample variance or sample standard deviation, which are non-robust, meaning greatly influenced by outliers.

References

  1. Geary, R. C. (1935). The ratio of the mean deviation to the standard deviation as a test of normality. Biometrika, 27(3/4), 310–332.
  2. See also Geary's 1936 and 1946 papers: Geary, R. C. (1936). Moments of the ratio of the mean deviation to the standard deviation for normal samples. Biometrika, 28(3/4), 295–307 and Geary, R. C. (1947). Testing for normality. Biometrika, 34(3/4), 209–242.
  3. "Archived copy". Archived from the original on 2014-01-16. Retrieved 2014-01-16.CS1 maint: Archived copy as title (link) CS1 maint: BOT: original-url status unknown (link)
  4. Kader, Gary (March 1999). "Means and MADS". Mathematics Teaching in the Middle School. 4 (6): 398–403. Archived from the original on 2013-05-18. Retrieved 20 February 2013.
  5. Franklin, Christine, Gary Kader, Denise Mewborn, Jerry Moreno, Roxy Peck, Mike Perry, and Richard Scheaffer (2007). Guidelines for Assessment and Instruction in Statistics Education (PDF). American Statistical Association. ISBN   978-0-9791747-1-1. Archived (PDF) from the original on 2013-03-07. Retrieved 2013-02-20.
  6. Nahmias, Steven; Olsen, Tava Lennon (2015), Production and Operations Analysis (7th ed.), Waveland Press, p. 62, ISBN   9781478628248, MAD is often the preferred method of measuring the forecast error because it does not require squaring.
  7. Stadtler, Hartmut; Kilger, Christoph; Meyr, Herbert, eds. (2014), Supply Chain Management and Advanced Planning: Concepts, Models, Software, and Case Studies, Springer Texts in Business and Economics (5th ed.), Springer, p. 143, ISBN   9783642553097, the meaning of the MAD is easier to interpret.
  8. Habib, Elsayed A.E. (2011). "Correlation coefficients based on mean absolute deviation about median". International Journal of Statistics and Systems. 6 (4): 413–428.[ permanent dead link ]