Robust measures of scale

Last updated

In statistics, robust measures of scale are methods that quantify the statistical dispersion in a sample of numerical data while resisting outliers. The most common such robust statistics are the interquartile range (IQR) and the median absolute deviation (MAD). These are contrasted with conventional or non-robust measures of scale, such as sample standard deviation, which are greatly influenced by outliers.

Contents

These robust statistics are particularly used as estimators of a scale parameter, and have the advantages of both robustness and superior efficiency on contaminated data, at the cost of inferior efficiency on clean data from distributions such as the normal distribution. To illustrate robustness, the standard deviation can be made arbitrarily large by increasing exactly one observation (it has a breakdown point of 0, as it can be contaminated by a single point), a defect that is not shared by robust statistics.

IQR and MAD

One of the most common robust measures of scale is the interquartile range (IQR), the difference between the 75th percentile and the 25th percentile of a sample; this is the 25% trimmed range, an example of an L-estimator. Other trimmed ranges, such as the interdecile range (10% trimmed range) can also be used. For a Gaussian distribution, IQR is related to as: [1]

Another familiar robust measure of scale is the median absolute deviation (MAD), the median of the absolute values of the differences between the data values and the overall median of the data set; for a Gaussian distribution, MAD is related to as:

See Median absolute deviation#Relation to standard deviation for details.

Estimation

Robust measures of scale can be used as estimators of properties of the population, either for parameter estimation or as estimators of their own expected value.

For example, robust estimators of scale are used to estimate the population standard deviation, generally by multiplying by a scale factor to make it an unbiased consistent estimator; see scale parameter: estimation. For example, dividing the IQR by 22 erf−1(1/2) (approximately 1.349), makes it an unbiased, consistent estimator for the population standard deviation if the data follow a normal distribution.

In other situations, it makes more sense to think of a robust measure of scale as an estimator of its own expected value, interpreted as an alternative to the population standard deviation as a measure of scale. For example, the MAD of a sample from a standard Cauchy distribution is an estimator of the population MAD, which in this case is 1, whereas the population variance does not exist.

Efficiency

These robust estimators typically have inferior statistical efficiency compared to conventional estimators for data drawn from a distribution without outliers (such as a normal distribution), but have superior efficiency for data drawn from a mixture distribution or from a heavy-tailed distribution, for which non-robust measures such as the standard deviation should not be used.

For example, for data drawn from the normal distribution, the MAD is 37% as efficient as the sample standard deviation, while the Rousseeuw–Croux estimator Qn is 88% as efficient as the sample standard deviation.

Absolute pairwise differences

Rousseeuw and Croux [2] propose alternatives to the MAD, motivated by two weaknesses of it:

  1. It is inefficient (37% efficiency) at Gaussian distributions.
  2. it computes a symmetric statistic about a location estimate, thus not dealing with skewness.

They propose two alternative statistics based on pairwise differences: Sn and Qn, defined as:

where is a constant depending on .

These can be computed in O(n log n) time and O(n) space.

Neither of these requires location estimation, as they are based only on differences between values. They are both more efficient than the MAD under a Gaussian distribution: Sn is 58% efficient, while Qn is 82% efficient.

For a sample from a normal distribution, Sn is approximately unbiased for the population standard deviation even down to very modest sample sizes (<1% bias for n = 10).

For a large sample from a normal distribution, 2.22Qn is approximately unbiased for the population standard deviation. For small or moderate samples, the expected value of Qn under a normal distribution depends markedly on the sample size, so finite-sample correction factors (obtained from a table or from simulations) are used to calibrate the scale of Qn.

The biweight midvariance

Like Sn and Qn, the biweight midvariance aims to be robust without sacrificing too much efficiency. It is defined as

where I is the indicator function, Q is the sample median of the Xi, and

Its square root is a robust estimator of scale, since data points are downweighted as their distance from the median increases, with points more than 9 MAD units from the median having no influence at all.

Extensions

Mizera & Müller (2004) propose a robust depth-based estimator for location and scale simultaneously. They propose a new measure named the Student median. [3]

Confidence intervals

A robust confidence interval is a robust modification of confidence intervals, meaning that one modifies the non-robust calculations of the confidence interval so that they are not badly affected by outlying or aberrant observations in a data-set.

Example

In the process of weighing 1000 objects, under practical conditions, it is easy to believe that the operator might make a mistake in procedure and so report an incorrect mass (thereby making one type of systematic error). Suppose there were 100 objects and the operator weighed them all, one at a time, and repeated the whole process ten times. Then the operator can calculate a sample standard deviation for each object, and look for outliers. Any object with an unusually large standard deviation probably has an outlier in its data. These can be removed by various non-parametric techniques. If the operator repeated the process only three times, simply taking the median of the three measurements and using σ would give a confidence interval. The 200 extra weighings served only to detect and correct for operator error and did nothing to improve the confidence interval. With more repetitions, one could use a truncated mean, discarding the largest and smallest values and averaging the rest. A bootstrap calculation could be used to determine a confidence interval narrower than that calculated from σ, and so obtain some benefit from a large amount of extra work.

These procedures are robust against procedural errors which are not modeled by the assumption that the balance has a fixed known standard deviation σ. In practical applications where the occasional operator error can occur, or the balance can malfunction, the assumptions behind simple statistical calculations cannot be taken for granted. Before trusting the results of 100 objects weighed just three times each to have confidence intervals calculated from σ, it is necessary to test for and remove a reasonable number of outliers (testing the assumption that the operator is careful and correcting for the fact that he is not perfect), and to test the assumption that the data really have a normal distribution with standard deviation σ.

Computer simulation

The theoretical analysis of such an experiment is complicated, but it is easy to set up a spreadsheet which draws random numbers from a normal distribution with standard deviation σ to simulate the situation; this can be done in Microsoft Excel using =NORMINV(RAND(),0,σ)), as discussed in [4] and the same techniques can be used in other spreadsheet programs such as in OpenOffice.org Calc and gnumeric.

After removing obvious outliers, one could subtract the median from the other two values for each object, and examine the distribution of the 200 resulting numbers. It should be normal with mean near zero and standard deviation a little larger than σ. A simple Monte Carlo spreadsheet calculation would reveal typical values for the standard deviation (around 105 to 115% of σ). Or, one could subtract the mean of each triplet from the values, and examine the distribution of 300 values. The mean is identically zero, but the standard deviation should be somewhat smaller (around 75 to 85% of σ).

See also

Related Research Articles

<span class="mw-page-title-main">Estimator</span> Rule for calculating an estimate of a given quantity based on observed data

In statistics, an estimator is a rule for calculating an estimate of a given quantity based on observed data: thus the rule, the quantity of interest and its result are distinguished. For example, the sample mean is a commonly used estimator of the population mean.

<span class="mw-page-title-main">Interquartile range</span> Measure of statistical dispersion

In descriptive statistics, the interquartile range (IQR) is a measure of statistical dispersion, which is the spread of the data. The IQR may also be called the midspread, middle 50%, fourth spread, or H‑spread. It is defined as the difference between the 75th and 25th percentiles of the data. To calculate the IQR, the data set is divided into quartiles, or four rank-ordered even parts via linear interpolation. These quartiles are denoted by Q1 (also called the lower quartile), Q2 (the median), and Q3 (also called the upper quartile). The lower quartile corresponds with the 25th percentile and the upper quartile corresponds with the 75th percentile, so IQR = Q3 − Q1.

In probability theory and statistics, kurtosis is a measure of the "tailedness" of the probability distribution of a real-valued random variable. Like skewness, kurtosis describes a particular aspect of a probability distribution. There are different ways to quantify kurtosis for a theoretical distribution, and there are corresponding ways of estimating it using a sample from a population. Different measures of kurtosis may have different interpretations.

<span class="mw-page-title-main">Median</span> Middle quantile of a data set or probability distribution

In statistics and probability theory, the median is the value separating the higher half from the lower half of a data sample, a population, or a probability distribution. For a data set, it may be thought of as "the middle" value when data is orderly arranged. The basic feature of the median in describing data compared to the mean is that it is not skewed by a small proportion of extremely large or small values (outlier), and therefore provides a better representation of the center. Median income, for example, may be a better way to describe the center of an income distribution because increases in the largest incomes alone have no effect on median while the average of the distribution is influenced. For this reason, the median is of central importance in robust statistics.

In statistics, a quartile is a type of quantile which divides the number of data points into four parts, or quarters, of more-or-less equal size. The data must be ordered from smallest to largest to compute quartiles; as such, quartiles are a form of order statistic. The three main quartiles are as follows:

<span class="mw-page-title-main">Standard deviation</span> In statistics, a measure of variation

In statistics, the standard deviation is a measure of the amount of variation of a random variable expected about its mean. A low standard deviation indicates that the values tend to be close to the mean of the set, while a high standard deviation indicates that the values are spread out over a wider range.

<span class="mw-page-title-main">Skewness</span> Measure of the asymmetry of random variables

In probability theory and statistics, skewness is a measure of the asymmetry of the probability distribution of a real-valued random variable about its mean. The skewness value can be positive, zero, negative, or undefined.

<span class="mw-page-title-main">Box plot</span> Data visualization

In descriptive statistics, a box plot or boxplot is a method for graphically demonstrating the locality, spread and skewness groups of numerical data through their quartiles. In addition to the box on a box plot, there can be lines extending from the box indicating variability outside the upper and lower quartiles, thus, the plot is also called the box-and-whisker plot and the box-and-whisker diagram. Outliers that differ significantly from the rest of the dataset may be plotted as individual points beyond the whiskers on the box-plot. Box plots are non-parametric: they display variation in samples of a statistical population without making any assumptions of the underlying statistical distribution. The spacings in each subsection of the box-plot indicate the degree of dispersion (spread) and skewness of the data, which are usually described using the five-number summary. In addition, the box-plot allows one to visually estimate various L-estimators, notably the interquartile range, midhinge, range, mid-range, and trimean. Box plots can be drawn either horizontally or vertically.

<span class="mw-page-title-main">Pearson correlation coefficient</span> Measure of linear correlation

In statistics, the Pearson correlation coefficient (PCC) is a correlation coefficient that measures linear correlation between two sets of data. It is the ratio between the covariance of two variables and the product of their standard deviations; thus, it is essentially a normalized measurement of the covariance, such that the result always has a value between −1 and 1. As with covariance itself, the measure can only reflect a linear correlation of variables, and ignores many other types of relationships or correlations. As a simple example, one would expect the age and height of a sample of teenagers from a high school to have a Pearson correlation coefficient significantly greater than 0, but less than 1.

The average absolute deviation (AAD) of a data set is the average of the absolute deviations from a central point. It is a summary statistic of statistical dispersion or variability. In the general form, the central point can be a mean, median, mode, or the result of any other measure of central tendency or any reference value related to the given data set. AAD includes the mean absolute deviation and the median absolute deviation.

<span class="mw-page-title-main">Standard error</span> Statistical property

The standard error (SE) of a statistic is the standard deviation of its sampling distribution or an estimate of that standard deviation. If the statistic is the sample mean, it is called the standard error of the mean (SEM). The standard error is a key ingredient in producing confidence intervals.

This glossary of statistics and probability is a list of definitions of terms and concepts used in the mathematical sciences of statistics and probability, their sub-disciplines, and related fields. For additional related terms, see Glossary of mathematics and Glossary of experimental design.

In statistics, the mid-range or mid-extreme is a measure of central tendency of a sample defined as the arithmetic mean of the maximum and minimum values of the data set:

Robust statistics are statistics which maintain their properties even if the underlying distributional assumptions are incorrect. Robust statistical methods have been developed for many common problems, such as estimating location, scale, and regression parameters. One motivation is to produce statistical methods that are not unduly affected by outliers. Another motivation is to provide methods with good performance when there are small departures from a parametric distribution. For example, robust methods work well for mixtures of two normal distributions with different standard deviations; under this model, non-robust methods like a t-test work poorly.

In statistics, the bias of an estimator is the difference between this estimator's expected value and the true value of the parameter being estimated. An estimator or decision rule with zero bias is called unbiased. In statistics, "bias" is an objective property of an estimator. Bias is a distinct concept from consistency: consistent estimators converge in probability to the true value of the parameter, but may be biased or unbiased; see bias versus consistency for more.

In statistics, the median absolute deviation (MAD) is a robust measure of the variability of a univariate sample of quantitative data. It can also refer to the population parameter that is estimated by the MAD calculated from a sample.

<span class="mw-page-title-main">L-estimator</span>

In statistics, an L-estimator is an estimator which is a linear combination of order statistics of the measurements. This can be as little as a single point, as in the median, or as many as all points, as in the mean.

In statistics, a trimmed estimator is an estimator derived from another estimator by excluding some of the extreme values, a process called truncation. This is generally done to obtain a more robust statistic, and the extreme values are considered outliers. Trimmed estimators also often have higher efficiency for mixture distributions and heavy-tailed distributions than the corresponding untrimmed estimator, at the cost of lower efficiency for other distributions, such as the normal distribution.

<span class="mw-page-title-main">Statistical dispersion</span> Statistical property quantifying how much a collection of data is spread out

In statistics, dispersion is the extent to which a distribution is stretched or squeezed. Common examples of measures of statistical dispersion are the variance, standard deviation, and interquartile range. For instance, when the variance of data in a set is large, the data is widely scattered. On the other hand, when the variance is small, the data in the set is clustered.

In statistics, efficiency is a measure of quality of an estimator, of an experimental design, or of a hypothesis testing procedure. Essentially, a more efficient estimator needs fewer input data or observations than a less efficient one to achieve the Cramér–Rao bound. An efficient estimator is characterized by having the smallest possible variance, indicating that there is a small deviance between the estimated value and the "true" value in the L2 norm sense.

References

  1. "Interquartile Range". NIST. Retrieved 2022-03-30.
  2. Rousseeuw, Peter J.; Croux, Christophe (December 1993), "Alternatives to the Median Absolute Deviation", Journal of the American Statistical Association, American Statistical Association, 88 (424): 1273–1283, doi:10.2307/2291267, JSTOR   2291267
  3. Mizera, I.; Müller, C. H. (2004), "Location-scale depth", Journal of the American Statistical Association, 99 (468): 949–966, doi:10.1198/016214504000001312 .
  4. Wittwer, J.W., "Monte Carlo Simulation in Excel: A Practical Guide", June 1, 2004