Truncated mean

Last updated

A truncated mean or trimmed mean is a statistical measure of central tendency, much like the mean and median. It involves the calculation of the mean after discarding given parts of a probability distribution or sample at the high and low end, and typically discarding an equal amount of both. This number of points to be discarded is usually given as a percentage of the total number of points, but may also be given as a fixed number of points.

Contents

For most statistical applications, 5 to 25 percent of the ends are discarded. For example, given a set of 8 points, trimming by 12.5% would discard the minimum and maximum value in the sample: the smallest and largest values, and would compute the mean of the remaining 6 points. The 25% trimmed mean (when the lowest 25% and the highest 25% are discarded) is known as the interquartile mean.

The median can be regarded as a fully truncated mean and is most robust. As with other trimmed estimators, the main advantage of the trimmed mean is robustness and higher efficiency for mixed distributions and heavy-tailed distribution (like the Cauchy distribution), at the cost of lower efficiency for some other less heavily tailed distributions (such as the normal distribution). For intermediate distributions the differences between the efficiency of the mean and the median are not very big, e.g. for the student-t distribution with 2 degrees of freedom the variances for mean and median are nearly equal.

Terminology

In some regions of Central Europe it is also known as a Windsor mean,[ citation needed ] but this name should not be confused with the Winsorized mean: in the latter, the observations that the trimmed mean would discard are instead replaced by the largest/smallest of the remaining values.

Discarding only the maximum and minimum is known as the modified mean, particularly in management statistics. [1] This is also known as the Olympic average (for example in US agriculture, like the Average Crop Revenue Election), due to its use in Olympic events, such as the ISU Judging System in figure skating, to make the score robust to a single outlier judge. [2]

Interpolation

When the percentage of points to discard does not yield a whole number, the trimmed mean may be defined by interpolation, generally linear interpolation, between the nearest whole numbers. For example, if you need to calculate the 15% trimmed mean of a sample containing 10 entries, strictly this would mean discarding 1 point from each end (equivalent to the 10% trimmed mean). If interpolating, one would instead compute the 10% trimmed mean (discarding 1 point from each end) and the 20% trimmed mean (discarding 2 points from each end), and then interpolating, in this case averaging these two values. Similarly, if interpolating the 12% trimmed mean, one would take the weighted average: weight the 10% trimmed mean by 0.8 and the 20% trimmed mean by 0.2.

Advantages

The truncated mean is a useful estimator because it is less sensitive to outliers than the mean but will still give a reasonable estimate of central tendency or mean for many statistical models. In this regard it is referred to as a robust estimator. For example, in its use in Olympic judging, truncating the maximum and minimum prevents a single judge from increasing or lowering the overall score by giving an exceptionally high or low score.

One situation in which it can be advantageous to use a truncated mean is when estimating the location parameter of a Cauchy distribution, a bell shaped probability distribution with (much) fatter tails than a normal distribution. It can be shown that the truncated mean of the middle 24% sample order statistics (i.e., truncate the sample by 38% at each end) produces an estimate for the population location parameter that is more efficient than using either the sample median or the full sample mean. [3] [4] However, due to the fat tails of the Cauchy distribution, the efficiency of the estimator decreases as more of the sample gets used in the estimate. [3] [4] Note that for the Cauchy distribution, neither the truncated mean, full sample mean or sample median represents a maximum likelihood estimator, nor are any as asymptotically efficient as the maximum likelihood estimator; however, the maximum likelihood estimate is more difficult to compute, leaving the truncated mean as a useful alternative. [4] [5]

Statistical tests

It is possible to perform a Student's t-test based on the truncated mean, which is called Yuen's t-test, [6] [7] which also has several implementations in R. [8] [9]

Examples

The scoring method used in many sports that are evaluated by a panel of judges is a truncated mean: discard the lowest and the highest scores; calculate the mean value of the remaining scores. [10]

The Libor benchmark interest rate is calculated as a trimmed mean: given 18 responses, the top 4 and bottom 4 are discarded, and the remaining 10 are averaged (yielding trim factor of 4/18 ≈ 22%). [11]

Consider the data set consisting of:

{92, 19, 101, 58, 1053, 91, 26, 78, 10, 13, −40, 101, 86, 85, 15, 89, 89, 28, −5, 41}       (N = 20, mean = 101.5)

The 5th percentile (−6.75) lies between −40 and −5, while the 95th percentile (148.6) lies between 101 and 1053 (values shown in bold). Then, a 5% trimmed mean would result in the following:

{92, 19, 101, 58, 91, 26, 78, 10, 13, 101, 86, 85, 15, 89, 89, 28, −5, 41}       (N = 18, mean = 56.5)

This example can be compared with the one using the Winsorising procedure.

See also

Related Research Articles

In statistics, a central tendency is a central or typical value for a probability distribution.

<span class="mw-page-title-main">Cauchy distribution</span> Probability distribution

The Cauchy distribution, named after Augustin Cauchy, is a continuous probability distribution. It is also known, especially among physicists, as the Lorentz distribution, Cauchy–Lorentz distribution, Lorentz(ian) function, or Breit–Wigner distribution. The Cauchy distribution is the distribution of the x-intercept of a ray issuing from with a uniformly distributed angle. It is also the distribution of the ratio of two independent normally distributed random variables with mean zero.

<span class="mw-page-title-main">Median</span> Middle quantile of a data set or probability distribution

In statistics and probability theory, the median is the value separating the higher half from the lower half of a data sample, a population, or a probability distribution. For a data set, it may be thought of as "the middle" value. The basic feature of the median in describing data compared to the mean is that it is not skewed by a small proportion of extremely large or small values, and therefore provides a better representation of the center. Median income, for example, may be a better way to describe center of the income distribution because increases in the largest incomes alone have no effect on median. For this reason, the median is of central importance in robust statistics.

Statistics is a field of inquiry that studies the collection, analysis, interpretation, and presentation of data. It is applicable to a wide variety of academic disciplines, from the physical and social sciences to the humanities; it is also used and misused for making informed decisions in all areas of business and government.

The average absolute deviation (AAD) of a data set is the average of the absolute deviations from a central point. It is a summary statistic of statistical dispersion or variability. In the general form, the central point can be a mean, median, mode, or the result of any other measure of central tendency or any reference value related to the given data set. AAD includes the mean absolute deviation and the median absolute deviation.

Winsorizing or winsorization is the transformation of statistics by limiting extreme values in the statistical data to reduce the effect of possibly spurious outliers. It is named after the engineer-turned-biostatistician Charles P. Winsor (1895–1951). The effect is the same as clipping in signal processing.

This glossary of statistics and probability is a list of definitions of terms and concepts used in the mathematical sciences of statistics and probability, their sub-disciplines, and related fields. For additional related terms, see Glossary of mathematics and Glossary of experimental design.

In statistics, the mid-range or mid-extreme is a measure of central tendency of a sample defined as the arithmetic mean of the maximum and minimum values of the data set:

Robust statistics are statistics with good performance for data drawn from a wide range of probability distributions, especially for distributions that are not normal. Robust statistical methods have been developed for many common problems, such as estimating location, scale, and regression parameters. One motivation is to produce statistical methods that are not unduly affected by outliers. Another motivation is to provide methods with good performance when there are small departures from a parametric distribution. For example, robust methods work well for mixtures of two normal distributions with different standard deviations; under this model, non-robust methods like a t-test work poorly.

In statistics, M-estimators are a broad class of extremum estimators for which the objective function is a sample average. Both non-linear least squares and maximum likelihood estimation are special cases of M-estimators. The definition of M-estimators was motivated by robust statistics, which contributed new types of M-estimators. However, M-estimators are not inherently robust, as is clear from the fact that they include maximum likelihood estimators, which are in general not robust. The statistical procedure of evaluating an M-estimator on a data set is called M-estimation. 48 samples of robust M-estimators can be found in a recent review study.

A winsorized mean is a winsorized statistical measure of central tendency, much like the mean and median, and even more similar to the truncated mean. It involves the calculation of the mean after winsorizing -- replacing given parts of a probability distribution or sample at the high and low end with the most extreme remaining values, typically doing so for an equal amount of both extremes; often 10 to 25 percent of the ends are replaced. The winsorized mean can equivalently be expressed as a weighted average of the truncated mean and the quantiles at which it is limited, which corresponds to replacing parts with the corresponding quantiles.

In statistics, the bias of an estimator is the difference between this estimator's expected value and the true value of the parameter being estimated. An estimator or decision rule with zero bias is called unbiased. In statistics, "bias" is an objective property of an estimator. Bias is a distinct concept from consistency: consistent estimators converge in probability to the true value of the parameter, but may be biased or unbiased; see bias versus consistency for more.

In statistics, the Hodges–Lehmann estimator is a robust and nonparametric estimator of a population's location parameter. For populations that are symmetric about one median, such as the (Gaussian) normal distribution or the Student t-distribution, the Hodges–Lehmann estimator is a consistent and median-unbiased estimate of the population median. For non-symmetric populations, the Hodges–Lehmann estimator estimates the "pseudo–median", which is closely related to the population median.

In statistics, the median absolute deviation (MAD) is a robust measure of the variability of a univariate sample of quantitative data. It can also refer to the population parameter that is estimated by the MAD calculated from a sample.

<span class="mw-page-title-main">L-estimator</span>

In statistics, an L-estimator is an estimator which is a linear combination of order statistics of the measurements. This can be as little as a single point, as in the median, or as many as all points, as in the mean.

In statistics, a trimmed estimator is an estimator derived from another estimator by excluding some of the extreme values, a process called truncation. This is generally done to obtain a more robust statistic, and the extreme values are considered outliers. Trimmed estimators also often have higher efficiency for mixture distributions and heavy-tailed distributions than the corresponding untrimmed estimator, at the cost of lower efficiency for other distributions, such as the normal distribution.

In statistics, robust measures of scale are methods that quantify the statistical dispersion in a sample of numerical data while resisting outliers. The most common such robust statistics are the interquartile range (IQR) and the median absolute deviation (MAD). These are contrasted with conventional or non-robust measures of scale, such as sample variance or standard deviation, which are greatly influenced by outliers.

<span class="mw-page-title-main">Wrapped Cauchy distribution</span>

In probability theory and directional statistics, a wrapped Cauchy distribution is a wrapped probability distribution that results from the "wrapping" of the Cauchy distribution around the unit circle. The Cauchy distribution is sometimes known as a Lorentzian distribution, and the wrapped Cauchy distribution may sometimes be referred to as a wrapped Lorentzian distribution.

In statistics, efficiency is a measure of quality of an estimator, of an experimental design, or of a hypothesis testing procedure. Essentially, a more efficient estimator needs fewer input data or observations than a less efficient one to achieve the Cramér–Rao bound. An efficient estimator is characterized by having the smallest possible variance, indicating that there is a small deviance between the estimated value and the "true" value in the L2 norm sense.

References

  1. Arulmozhi, G.; Statistics For Management, 2nd Edition, Tata McGraw-Hill Education, 2009, p. 458
  2. Paul E. Peterson (August 3, 2012). "Lessons from LIBOR". Once the quotes are compiled, LIBOR uses a trimmed mean process, in which the highest and lowest values are thrown out and the remaining values are averaged. This is sometimes called an "Olympic average" from its use in the Olympics to eliminate the impact of a biased judge on an athlete's final score.
  3. 1 2 Rothenberg, Thomas J.; Fisher, Franklin, M.; Tilanus, C.B. (1964). "A note on estimation from a cauchy sample". Journal of the American Statistical Association. 59 (306): 460–463. doi:10.1080/01621459.1964.10482170.
  4. 1 2 3 Bloch, Daniel (1966). "A note on the estimation of the location parameters of the Cauchy distribution". Journal of the American Statistical Association. 61 (316): 852–855. doi:10.1080/01621459.1966.10480912. JSTOR   2282794.
  5. Ferguson, Thomas S. (1978). "Maximum Likelihood Estimates of the Parameters of the Cauchy Distribution for Samples of Size 3 and 4". Journal of the American Statistical Association. 73 (361): 211–213. doi:10.1080/01621459.1978.10480031. JSTOR   2286549.
  6. Yuen, K.K. (1974) The two-sample trimmed t for unequal population variances. Biometrika, 61, 165-170.
  7. Wilcox, R.R. (2005). Introduction to robust estimation and hypothesis testing. Academic Press.
  8. "WRS2: A Collection of Robust Statistical Methods". 20 July 2021.
  9. "DescTools: Tools for Descriptive Statistics". 9 September 2021.
  10. Bialik, Carl (27 July 2012). "Removing Judges' Bias Is Olympic-Size Challenge". The Wall Street Journal. Retrieved 7 September 2014.
  11. "bbalibor: The Basics". The British Bankers' Association.