This article includes a list of general references, but it lacks sufficient corresponding inline citations .(November 2010) |
The mean absolute difference (univariate) is a measure of statistical dispersion equal to the average absolute difference of two independent values drawn from a probability distribution. A related statistic is the relative mean absolute difference , which is the mean absolute difference divided by the arithmetic mean, and equal to twice the Gini coefficient. The mean absolute difference is also known as the absolute mean difference (not to be confused with the absolute value of the mean signed difference) and the Gini mean difference (GMD). [1] The mean absolute difference is sometimes denoted by Δ or as MD.
The mean absolute difference is defined as the "average" or "mean", formally the expected value, of the absolute difference of two random variables X and Y independently and identically distributed with the same (unknown) distribution henceforth called Q.
Specifically, in the discrete case,
In the continuous case,
An alternative form of the equation is given by:
When the probability distribution has a finite and nonzero arithmetic mean AM, the relative mean absolute difference, sometimes denoted by Δ or RMD, is defined by
The relative mean absolute difference quantifies the mean absolute difference in comparison to the size of the mean and is a dimensionless quantity. The relative mean absolute difference is equal to twice the Gini coefficient which is defined in terms of the Lorenz curve. This relationship gives complementary perspectives to both the relative mean absolute difference and the Gini coefficient, including alternative ways of calculating their values.
The mean absolute difference is invariant to translations and negation, and varies proportionally to positive scaling. That is to say, if X is a random variable and c is a constant:
The relative mean absolute difference is invariant to positive scaling, commutes with negation, and varies under translation in proportion to the ratio of the original and translated arithmetic means. That is to say, if X is a random variable and c is a constant:
If a random variable has a positive mean, then its relative mean absolute difference will always be greater than or equal to zero. If, additionally, the random variable can only take on values that are greater than or equal to zero, then its relative mean absolute difference will be less than 2.
The mean absolute difference is twice the L-scale (the second L-moment), while the standard deviation is the square root of the variance about the mean (the second conventional central moment). The differences between L-moments and conventional moments are first seen in comparing the mean absolute difference and the standard deviation (the first L-moment and first conventional moment are both the mean).
Both the standard deviation and the mean absolute difference measure dispersion—how spread out are the values of a population or the probabilities of a distribution. The mean absolute difference is not defined in terms of a specific measure of central tendency, whereas the standard deviation is defined in terms of the deviation from the arithmetic mean. Because the standard deviation squares its differences, it tends to give more weight to larger differences and less weight to smaller differences compared to the mean absolute difference. When the arithmetic mean is finite, the mean absolute difference will also be finite, even when the standard deviation is infinite. See the examples for some specific comparisons.
The recently introduced distance standard deviation plays similar role to the mean absolute difference but the distance standard deviation works with centered distances. See also E-statistics.
For a random sample S from a random variable X, consisting of n values yi, the statistic
is a consistent and unbiased estimator of MD(X). The statistic:
is a consistent estimator of RMD(X), but is not, in general, unbiased.
Confidence intervals for RMD(X) can be calculated using bootstrap sampling techniques.
There does not exist, in general, an unbiased estimator for RMD(X), in part because of the difficulty of finding an unbiased estimation for multiplying by the inverse of the mean. For example, even where the sample is known to be taken from a random variable X(p) for an unknown p, and X(p) − 1 has the Bernoulli distribution, so that Pr(X(p) = 1) = 1 − p and Pr(X(p) = 2) = p, then
But the expected value of any estimator R(S) of RMD(X(p)) will be of the form:[ citation needed ]
where the ri are constants. So E(R(S)) can never equal RMD(X(p)) for all p between 0 and 1.
Distribution | Parameters | Mean | Standard deviation | Mean absolute difference | Relative mean absolute difference |
---|---|---|---|---|---|
Continuous uniform | |||||
Normal | ; | undefined | |||
Exponential | |||||
Pareto | ; | ||||
Gamma | ; | † | † | ||
Gamma | ; | ||||
Gamma | ; | ||||
Gamma | ; | ||||
Gamma | ; | ||||
Bernoulli | |||||
Student's t, 2 d.f. | | undefined |
The Cauchy distribution, named after Augustin-Louis Cauchy, is a continuous probability distribution. It is also known, especially among physicists, as the Lorentz distribution, Cauchy–Lorentz distribution, Lorentz(ian) function, or Breit–Wigner distribution. The Cauchy distribution is the distribution of the x-intercept of a ray issuing from with a uniformly distributed angle. It is also the distribution of the ratio of two independent normally distributed random variables with mean zero.
In economics, the Gini coefficient, also known as the Gini index or Gini ratio, is a measure of statistical dispersion intended to represent the income inequality, the wealth inequality, or the consumption inequality within a nation or a social group. It was developed by Italian statistician and sociologist Corrado Gini.
In economics, the Lorenz curve is a graphical representation of the distribution of income or of wealth. It was developed by Max O. Lorenz in 1905 for representing inequality of the wealth distribution.
The median of a set of numbers is the value separating the higher half from the lower half of a data sample, a population, or a probability distribution. For a data set, it may be thought of as the “middle" value. The basic feature of the median in describing data compared to the mean is that it is not skewed by a small proportion of extremely large or small values, and therefore provides a better representation of the center. Median income, for example, may be a better way to describe the center of the income distribution because increases in the largest incomes alone have no effect on the median. For this reason, the median is of central importance in robust statistics.
In probability theory and statistics, a central moment is a moment of a probability distribution of a random variable about the random variable's mean; that is, it is the expected value of a specified integer power of the deviation of the random variable from the mean. The various moments form one set of values by which the properties of a probability distribution can be usefully characterized. Central moments are used in preference to ordinary moments, computed in terms of deviations from the mean instead of from zero, because the higher-order central moments relate only to the spread and shape of the distribution, rather than also to its location.
In probability theory and statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable. The general form of its probability density function is The parameter is the mean or expectation of the distribution, while the parameter is the variance. The standard deviation of the distribution is (sigma). A random variable with a Gaussian distribution is said to be normally distributed, and is called a normal deviate.
In statistics, the standard deviation is a measure of the amount of variation of the values of a variable about its mean. A low standard deviation indicates that the values tend to be close to the mean of the set, while a high standard deviation indicates that the values are spread out over a wider range. The standard deviation is commonly used in the determination of what constitutes an outlier and what does not.
In probability theory and statistics, variance is the expected value of the squared deviation from the mean of a random variable. The standard deviation (SD) is obtained as the square root of the variance. Variance is a measure of dispersion, meaning it is a measure of how far a set of numbers is spread out from their average value. It is the second central moment of a distribution, and the covariance of the random variable with itself, and it is often represented by , , , , or .
In probability theory and statistics, the geometric distribution is either one of two discrete probability distributions:
In probability theory and statistics, the beta distribution is a family of continuous probability distributions defined on the interval [0, 1] or in terms of two positive parameters, denoted by alpha (α) and beta (β), that appear as exponents of the variable and its complement to 1, respectively, and control the shape of the distribution.
In probability theory and statistics, the coefficient of variation (CV), also known as normalized root-mean-square deviation (NRMSD), percent RMS, and relative standard deviation (RSD), is a standardized measure of dispersion of a probability distribution or frequency distribution. It is defined as the ratio of the standard deviation to the mean , and often expressed as a percentage ("%RSD"). The CV or RSD is widely used in analytical chemistry to express the precision and repeatability of an assay. It is also commonly used in fields such as engineering or physics when doing quality assurance studies and ANOVA gauge R&R, by economists and investors in economic models, and in psychology/neuroscience.
In mathematical statistics, the Kullback–Leibler (KL) divergence, denoted , is a type of statistical distance: a measure of how one reference probability distribution P is different from a second probability distribution Q. Mathematically, it is defined as
In statistics, ordinary least squares (OLS) is a type of linear least squares method for choosing the unknown parameters in a linear regression model by the principle of least squares: minimizing the sum of the squares of the differences between the observed dependent variable in the input dataset and the output of the (linear) function of the independent variable. Some sources consider OLS to be linear regression.
In statistics and information theory, a maximum entropy probability distribution has entropy that is at least as great as that of all other members of a specified class of probability distributions. According to the principle of maximum entropy, if nothing is known about a distribution except that it belongs to a certain class, then the distribution with the largest entropy should be chosen as the least-informative default. The motivation is twofold: first, maximizing entropy minimizes the amount of prior information built into the distribution; second, many physical systems tend to move towards maximal entropy configurations over time.
This glossary of statistics and probability is a list of definitions of terms and concepts used in the mathematical sciences of statistics and probability, their sub-disciplines, and related fields. For additional related terms, see Glossary of mathematics and Glossary of experimental design.
In statistics, mean absolute error (MAE) is a measure of errors between paired observations expressing the same phenomenon. Examples of Y versus X include comparisons of predicted versus observed, subsequent time versus initial time, and one technique of measurement versus an alternative technique of measurement. MAE is calculated as the sum of absolute errors divided by the sample size:It is thus an arithmetic average of the absolute errors , where is the prediction and the true value. Alternative formulations may include relative frequencies as weight factors. The mean absolute error uses the same scale as the data being measured. This is known as a scale-dependent accuracy measure and therefore cannot be used to make comparisons between predicted values that use different scales. The mean absolute error is a common measure of forecast error in time series analysis, sometimes used in confusion with the more standard definition of mean absolute deviation. The same confusion exists more generally.
The root mean square deviation (RMSD) or root mean square error (RMSE) is either one of two closely related and frequently used measures of the differences between true or predicted values on the one hand and observed values or an estimator on the other. The deviation is typically simply a differences of scalars; it can also be generalized to the vector lengths of a displacement, as in the bioinformatics concept of root mean square deviation of atomic positions.
The sample mean or empirical mean, and the sample covariance or empirical covariance are statistics computed from a sample of data on one or more random variables.
In probability theory and statistics, the Poisson distribution is a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time if these events occur with a known constant mean rate and independently of the time since the last event. It can also be used for the number of events in other types of intervals than time, and in dimension greater than 1.
In statistics and in probability theory, distance correlation or distance covariance is a measure of dependence between two paired random vectors of arbitrary, not necessarily equal, dimension. The population distance correlation coefficient is zero if and only if the random vectors are independent. Thus, distance correlation measures both linear and nonlinear association between two random variables or random vectors. This is in contrast to Pearson's correlation, which can only detect linear association between two random variables.
{{cite journal}}
: Cite journal requires |journal=
(help)