Independent and identically distributed random variables

Last updated
A chart showing a uniform distribution Laglag h=001.png
A chart showing a uniform distribution

In probability theory and statistics, a collection of random variables is independent and identically distributed (i.i.d., iid, or IID) if each random variable has the same probability distribution as the others and all are mutually independent. [1] IID was first defined in statistics and finds application in many fields, such as data mining and signal processing.

Contents

Introduction

Statistics commonly deals with random samples. A random sample can be thought of as a set of objects that are chosen randomly. More formally, it is "a sequence of independent, identically distributed (IID) random data points."

In other words, the terms random sample and IID are synonymous. In statistics, "random sample" is the typical terminology, but in probability, it is more common to say "IID."

Application

Independent and identically distributed random variables are often used as an assumption, which tends to simplify the underlying mathematics. In practical applications of statistical modeling, however, this assumption may or may not be realistic. [3]

The i.i.d. assumption is also used in the central limit theorem, which states that the probability distribution of the sum (or average) of i.i.d. variables with finite variance approaches a normal distribution. [4]

The i.i.d. assumption frequently arises in the context of sequences of random variables. Then, "independent and identically distributed" implies that an element in the sequence is independent of the random variables that came before it. In this way, an i.i.d. sequence is different from a Markov sequence, where the probability distribution for the nth random variable is a function of the previous random variable in the sequence (for a first-order Markov sequence). An i.i.d. sequence does not imply the probabilities for all elements of the sample space or event space must be the same. [5] For example, repeated throws of loaded dice will produce a sequence that is i.i.d., despite the outcomes being biased.

In signal processing and image processing, the notion of transformation to i.i.d. implies two specifications, the "i.d." part and the "i." part:

i.d. – The signal level must be balanced on the time axis.

i. – The signal spectrum must be flattened, i.e. transformed by filtering (such as deconvolution) to a white noise signal (i.e. a signal where all frequencies are equally present).

Definition

Definition for two random variables

Suppose that the random variables and are defined to assume values in . Let and be the cumulative distribution functions of and , respectively, and denote their joint cumulative distribution function by .

Two random variables and are independent if and only if for all . (For the simpler case of events, two events and are independent if and only if , see also Independence (probability theory) § Two random variables.)

Two random variables and are identically distributed if and only if for all . [6]

Two random variables and are i.i.d. if they are independent and identically distributed, i.e. if and only if

Definition for more than two random variables

The definition extends naturally to more than two random variables. We say that random variables are i.i.d. if they are independent (see further Independence (probability theory) § More than two random variables) and identically distributed, i.e. if and only if

where denotes the joint cumulative distribution function of .

Examples

Example 1

A sequence of outcomes of spins of a fair or unfair roulette wheel is i.i.d. One implication of this is that if the roulette ball lands on "red", for example, 20 times in a row, the next spin is no more or less likely to be "black" than on any other spin (see the gambler's fallacy).

Example 2

Toss a coin 10 times and write down the results into variables .

  1. Independent: Each outcome will not affect the other outcome (for from 1 to 10), which means the variables are independent of each other.
  2. Identically distributed: Regardless of whether the coin is fair (with a probability of 1/2 for heads) or biased, as long as the same coin is used for each flip, the probability of getting heads remains consistent across all flips.

Such a sequence of i.i.d. variables is also called a Bernoulli process.

Example 3

Roll a die 10 times and save the results into variables .

  1. Independent: Each outcome of the die roll will not affect the next one, which means the 10 variables are independent from each other.
  2. Identically distributed: Regardless of whether the die is fair or weighted, each roll will have the same probability of seeing each result as every other roll. In contrast, rolling 10 different dice, some of which are weighted and some of which are not, would not produce i.i.d. variables.

Example 4

Choose a card from a standard deck of cards containing 52 cards, then place the card back in the deck. Repeat this 52 times. Observe when a king appears.

  1. Independent: Each observation will not affect the next one, which means the 52 results are independent from each other. In contrast, if each card that is drawn is kept out of the deck, subsequent draws would be affected by it (drawing one king would make drawing a second king less likely), and the observations would not be independent.
  2. Identically distributed: After drawing one card from it (and then returning the card to the deck), each time the probability for a king is 4/52, which means the probability is identical each time.

Generalizations

Many results that were first proven under the assumption that the random variables are i.i.d. have been shown to be true even under a weaker distributional assumption.

Exchangeable random variables

The most general notion which shares the main properties of i.i.d. variables are exchangeable random variables, introduced by Bruno de Finetti.[ citation needed ] Exchangeability means that while variables may not be independent, future ones behave like past ones — formally, any value of a finite sequence is as likely as any permutation of those values — the joint probability distribution is invariant under the symmetric group.

This provides a useful generalization — for example, sampling without replacement is not independent, but is exchangeable.

Lévy process

In stochastic calculus, i.i.d. variables are thought of as a discrete time Lévy process: each variable gives how much one changes from one time to another. For example, a sequence of Bernoulli trials is interpreted as the Bernoulli process.

One may generalize this to include continuous time Lévy processes, and many Lévy processes can be seen as limits of i.i.d. variables—for instance, the Wiener process is the limit of the Bernoulli process.

In machine learning

Machine learning (ML) involves learning statistical relationships within data. To train ML models effectively, it is crucial to use data that is broadly generalizable. If the training data is insufficiently representative of the task, the model's performance on new, unseen data may be poor.

The i.i.d. hypothesis allows for a significant reduction in the number of individual cases required in the training sample, simplifying optimization calculations. In optimization problems, the assumption of independent and identical distribution simplifies the calculation of the likelihood function. Due to this assumption, the likelihood function can be expressed as:

To maximize the probability of the observed event, the log function is applied to maximize the parameter . Specifically, it computes:

where

Computers are very efficient at performing multiple additions, but not as efficient at performing multiplications. This simplification enhances computational efficiency. The log transformation, in the process of maximizing, converts many exponential functions into linear functions.

There are two main reasons why this hypothesis is practically useful with the central limit theorem (CLT):

  1. Even if the sample originates from a complex non-Gaussian distribution, it can be well-approximated because the CLT allows it to be simplified to a Gaussian distribution ("for a large number of observable samples, the sum of many random variables will have an approximately normal distribution").
  2. The second reason is that the model's accuracy depends on the simplicity and representational power of the model unit, as well as the data quality. The simplicity of the unit makes it easy to interpret and scale, while the representational power and scalability improve model accuracy. In a deep neural network, for instance, each neuron is simple yet powerful in representation, layer by layer, capturing more complex features to enhance model accuracy.

See also

Related Research Articles

<span class="mw-page-title-main">Random variable</span> Variable representing a random phenomenon

A random variable is a mathematical formalization of a quantity or object which depends on random events. The term 'random variable' in its mathematical definition refers to neither randomness nor variability but instead is a mathematical function in which

<span class="mw-page-title-main">Central limit theorem</span> Fundamental theorem in probability theory and statistics

In probability theory, the central limit theorem (CLT) states that, under appropriate conditions, the distribution of a normalized version of the sample mean converges to a standard normal distribution. This holds even if the original variables themselves are not normally distributed. There are several versions of the CLT, each applying in the context of different conditions.

A likelihood function measures how well a statistical model explains observed data by calculating the probability of seeing that data under different parameter values of the model. It is constructed from the joint probability distribution of the random variable that (presumably) generated the observations. When evaluated on the actual data points, it becomes a function solely of the model parameters.

<span class="mw-page-title-main">Chi-squared distribution</span> Probability distribution and special case of gamma distribution

In probability theory and statistics, the chi-squared distribution with degrees of freedom is the distribution of a sum of the squares of independent standard normal random variables.

In statistics, maximum likelihood estimation (MLE) is a method of estimating the parameters of an assumed probability distribution, given some observed data. This is achieved by maximizing a likelihood function so that, under the assumed statistical model, the observed data is most probable. The point in the parameter space that maximizes the likelihood function is called the maximum likelihood estimate. The logic of maximum likelihood is both intuitive and flexible, and as such the method has become a dominant means of statistical inference.

In statistics, sufficiency is a property of a statistic computed on a sample dataset in relation to a parametric model of the dataset. A sufficient statistic contains all of the information that the dataset provides about the model parameters. It is closely related to the concepts of an ancillary statistic which contains no information about the model parameters, and of a complete statistic which only contains information about the parameters and no ancillary information.

<span class="mw-page-title-main">Law of large numbers</span> Averages of repeated trials converge to the expected value

In probability theory, the law of large numbers (LLN) is a mathematical law that states that the average of the results obtained from a large number of independent random samples converges to the true value, if it exists. More formally, the LLN states that given a sample of independent and identically distributed values, the sample mean converges to the true mean.

<span class="mw-page-title-main">Gamma distribution</span> Probability distribution

In probability theory and statistics, the gamma distribution is a versatile two-parameter family of continuous probability distributions. The exponential distribution, Erlang distribution, and chi-squared distribution are special cases of the gamma distribution. There are two equivalent parameterizations in common use:

  1. With a shape parameter k and a scale parameter θ
  2. With a shape parameter and a rate parameter

In numerical analysis and computational statistics, rejection sampling is a basic technique used to generate observations from a distribution. It is also commonly called the acceptance-rejection method or "accept-reject algorithm" and is a type of exact simulation method. The method works for any distribution in with a density.

In statistics, Gibbs sampling or a Gibbs sampler is a Markov chain Monte Carlo (MCMC) algorithm for sampling from a specified multivariate probability distribution when direct sampling from the joint distribution is difficult, but sampling from the conditional distribution is more practical. This sequence can be used to approximate the joint distribution ; to approximate the marginal distribution of one of the variables, or some subset of the variables ; or to compute an integral. Typically, some of the variables correspond to observations whose values are known, and hence do not need to be sampled.

Renewal theory is the branch of probability theory that generalizes the Poisson process for arbitrary holding times. Instead of exponentially distributed holding times, a renewal process may have any independent and identically distributed (IID) holding times that have finite mean. A renewal-reward process additionally has a random sequence of rewards incurred at each holding time, which are IID but need not be independent of the holding times.

Probability theory and statistics have some commonly used conventions, in addition to standard mathematical notation and mathematical symbols.

In mathematics, a π-system on a set is a collection of certain subsets of such that

In probability theory, the Chinese restaurant process is a discrete-time stochastic process, analogous to seating customers at tables in a restaurant. Imagine a restaurant with an infinite number of circular tables, each with infinite capacity. Customer 1 sits at the first table. The next customer either sits at the same table as customer 1, or the next table. This continues, with each customer choosing to either sit at an occupied table with a probability proportional to the number of customers already there, or an unoccupied table. At time n, the n customers have been partitioned among m ≤ n tables. The results of this process are exchangeable, meaning the order in which the customers sit does not affect the probability of the final distribution. This property greatly simplifies a number of problems in population genetics, linguistic analysis, and image recognition.

In statistics, an exchangeable sequence of random variables is a sequence X1X2X3, ... whose joint probability distribution does not change when the positions in the sequence in which finitely many of them appear are altered. In other words, the joint distribution is invariant to finite permutation. Thus, for example the sequences

Bootstrapping is a procedure for estimating the distribution of an estimator by resampling one's data or a model estimated from the data. Bootstrapping assigns measures of accuracy to sample estimates. This technique allows estimation of the sampling distribution of almost any statistic using random sampling methods.

Although the term well-behaved statistic often seems to be used in the scientific literature in somewhat the same way as is well-behaved in mathematics it can also be assigned precise mathematical meaning, and in more than one way. In the former case, the meaning of this term will vary from context to context. In the latter case, the mathematical conditions can be used to derive classes of combinations of distributions with statistics which are well-behaved in each sense.

<span class="mw-page-title-main">Poisson distribution</span> Discrete probability distribution

In probability theory and statistics, the Poisson distribution is a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time if these events occur with a known constant mean rate and independently of the time since the last event. It can also be used for the number of events in other types of intervals than time, and in dimension greater than 1.

Exponential Tilting (ET), Exponential Twisting, or Exponential Change of Measure (ECM) is a distribution shifting technique used in many parts of mathematics. The different exponential tiltings of a random variable is known as the natural exponential family of .

In statistical hypothesis testing, e-values quantify the evidence in the data against a null hypothesis. They serve as a more robust alternative to p-values, addressing some shortcomings of the latter.

References

  1. Clauset, Aaron (2011). "A brief primer on probability distributions" (PDF). Santa Fe Institute. Archived from the original (PDF) on 2012-01-20. Retrieved 2011-11-29.
  2. Stephanie (2016-05-11). "IID Statistics: Independent and Identically Distributed Definition and Examples". Statistics How To. Retrieved 2021-12-09.
  3. Hampel, Frank (1998), "Is statistics too difficult?", Canadian Journal of Statistics, 26 (3): 497–513, doi:10.2307/3315772, hdl: 20.500.11850/145503 , JSTOR   3315772, S2CID   53117661 (§8).
  4. Blum, J. R.; Chernoff, H.; Rosenblatt, M.; Teicher, H. (1958). "Central Limit Theorems for Interchangeable Processes". Canadian Journal of Mathematics. 10: 222–229. doi: 10.4153/CJM-1958-026-0 . S2CID   124843240.
  5. Cover, T. M.; Thomas, J. A. (2006). Elements Of Information Theory. Wiley-Interscience. pp. 57–58. ISBN   978-0-471-24195-9.
  6. Casella & Berger 2002 , Theorem 1.5.10

Further reading