Coefficient of variation

Last updated

In probability theory and statistics, the coefficient of variation (CV), also known as Normalized Root-Mean-Square Deviation (NRMSD), Percent RMS, and relative standard deviation (RSD), is a standardized measure of dispersion of a probability distribution or frequency distribution. It is defined as the ratio of the standard deviation to the mean (or its absolute value, ), and often expressed as a percentage ("%RSD"). The CV or RSD is widely used in analytical chemistry to express the precision and repeatability of an assay. It is also commonly used in fields such as engineering or physics when doing quality assurance studies and ANOVA gauge R&R,[ citation needed ] by economists and investors in economic models, and in psychology/neuroscience.

Contents

Definition

The coefficient of variation (CV) is defined as the ratio of the standard deviation to the mean , [1]

It shows the extent of variability in relation to the mean of the population. The coefficient of variation should be computed only for data measured on scales that have a meaningful zero (ratio scale) and hence allow relative comparison of two measurements (i.e., division of one measurement by the other). The coefficient of variation may not have any meaning for data on an interval scale. [2] For example, most temperature scales (e.g., Celsius, Fahrenheit etc.) are interval scales with arbitrary zeros, so the computed coefficient of variation would be different depending on the scale used. On the other hand, Kelvin temperature has a meaningful zero, the complete absence of thermal energy, and thus is a ratio scale. In plain language, it is meaningful to say that 20 Kelvin is twice as hot as 10 Kelvin, but only in this scale with a true absolute zero. While a standard deviation (SD) can be measured in Kelvin, Celsius, or Fahrenheit, the value computed is only applicable to that scale. Only the Kelvin scale can be used to compute a valid coefficient of variability.

Measurements that are log-normally distributed exhibit stationary CV; in contrast, SD varies depending upon the expected value of measurements.

A more robust possibility is the quartile coefficient of dispersion, half the interquartile range divided by the average of the quartiles (the midhinge), .

In most cases, a CV is computed for a single independent variable (e.g., a single factory product) with numerous, repeated measures of a dependent variable (e.g., error in the production process). However, data that are linear or even logarithmically non-linear and include a continuous range for the independent variable with sparse measurements across each value (e.g., scatter-plot) may be amenable to single CV calculation using a maximum-likelihood estimation approach. [3]

Examples

In the examples below, we will take the values given as randomly chosen from a larger population of values.


In these examples, we will take the values given as the entire population of values.

Estimation

When only a sample of data from a population is available, the population CV can be estimated using the ratio of the sample standard deviation to the sample mean :

But this estimator, when applied to a small or moderately sized sample, tends to be too low: it is a biased estimator. For normally distributed data, an unbiased estimator [4] for a sample of size n is:

Log-normal data

Many datasets follow an approximately log-normal distribution. [5] In such cases, a more accurate estimate, derived from the properties of the log-normal distribution, [6] [7] [8] is defined as:

where is the sample standard deviation of the data after a natural log transformation. (In the event that measurements are recorded using any other logarithmic base, b, their standard deviation is converted to base e using , and the formula for remains the same. [9] ) This estimate is sometimes referred to as the "geometric CV" (GCV) [10] [11] in order to distinguish it from the simple estimate above. However, "geometric coefficient of variation" has also been defined by Kirkwood [12] as:

This term was intended to be analogous to the coefficient of variation, for describing multiplicative variation in log-normal data, but this definition of GCV has no theoretical basis as an estimate of itself.

For many practical purposes (such as sample size determination and calculation of confidence intervals) it is which is of most use in the context of log-normally distributed data. If necessary, this can be derived from an estimate of or GCV by inverting the corresponding formula.

Comparison to standard deviation

Advantages

The coefficient of variation is useful because the standard deviation of data must always be understood in the context of the mean of the data. In contrast, the actual value of the CV is independent of the unit in which the measurement has been taken, so it is a dimensionless number. For comparison between data sets with different units or widely different means, one should use the coefficient of variation instead of the standard deviation.

Disadvantages

Applications

The coefficient of variation is also common in applied probability fields such as renewal theory, queueing theory, and reliability theory. In these fields, the exponential distribution is often more important than the normal distribution. The standard deviation of an exponential distribution is equal to its mean, so its coefficient of variation is equal to 1. Distributions with CV < 1 (such as an Erlang distribution) are considered low-variance, while those with CV > 1 (such as a hyper-exponential distribution) are considered high-variance[ citation needed ]. Some formulas in these fields are expressed using the squared coefficient of variation, often abbreviated SCV. In modeling, a variation of the CV is the CV(RMSD). Essentially the CV(RMSD) replaces the standard deviation term with the Root Mean Square Deviation (RMSD). While many natural processes indeed show a correlation between the average value and the amount of variation around it, accurate sensor devices need to be designed in such a way that the coefficient of variation is close to zero, i.e., yielding a constant absolute error over their working range.

In actuarial science, the CV is known as unitized risk. [13]

In Industrial Solids Processing, CV is particularly important to measure the degree of homogeneity of a powder mixture. Comparing the calculated CV to a specification will allow to define if a sufficient degree of mixing has been reached. [14]

In Fluid Dynamics, the CV, also referred to as Percent RMS, %RMS, %RMS Uniformity, or Velocity RMS, is a useful determination of flow uniformity for industrial processes. The term is used widely in the design of pollution control equipment, such as electrostatic precipitators (ESPs), [15] selective catalytic reduction (SCR), scrubbers, and similar devices. The Institute of Clean Air Companies (ICAC) references RMS deviation of velocity in the design of fabric filters (ICAC document F-7). [16] The guiding principal is that many of these pollution control devices require "uniform flow" entering and through the control zone. This can be related to uniformity of velocity profile, temperature distribution, gas species (such as ammonia for an SCR, or activated carbon injection for mercury absorption), and other flow-related parameters. The Percent RMS also is used to assess flow uniformity in combustion systems, HVAC systems, ductwork, inlets to fans and filters, air handling units, etc. where performance of the equipment is influenced by the incoming flow distribution.

Laboratory measures of intra-assay and inter-assay CVs

CV measures are often used as quality controls for quantitative laboratory assays. While intra-assay and inter-assay CVs might be assumed to be calculated by simply averaging CV values across CV values for multiple samples within one assay or by averaging multiple inter-assay CV estimates, it has been suggested that these practices are incorrect and that a more complex computational process is required. [17] It has also been noted that CV values are not an ideal index of the certainty of a measurement when the number of replicates varies across samples − in this case standard error in percent is suggested to be superior. [18] If measurements do not have a natural zero point then the CV is not a valid measurement and alternative measures such as the intraclass correlation coefficient are recommended. [19]

As a measure of economic inequality

The coefficient of variation fulfills the requirements for a measure of economic inequality. [20] [21] [22] If x (with entries xi) is a list of the values of an economic indicator (e.g. wealth), with xi being the wealth of agent i, then the following requirements are met:

cv assumes its minimum value of zero for complete equality (all xi are equal). [22] Its most notable drawback is that it is not bounded from above, so it cannot be normalized to be within a fixed range (e.g. like the Gini coefficient which is constrained to be between 0 and 1). [22] It is, however, more mathematically tractable than the Gini coefficient.

As a measure of standardisation of archaeological artefacts

Archaeologists often use CV values to compare the degree of standardisation of ancient artefacts. [23] [24] Variation in CVs has been interpreted to indicate different cultural transmission contexts for the adoption of new technologies. [25] Coefficients of variation have also been used to investigate pottery standardisation relating to changes in social organisation. [26] Archaeologists also use several methods for comparing CV values, for example the modified signed-likelihood ratio (MSLR) test for equality of CVs. [27] [28]

Examples of misuse

Comparing coefficients of variation between parameters using relative units can result in differences that may not be real. If we compare the same set of temperatures in Celsius and Fahrenheit (both relative units, where kelvin and Rankine scale are their associated absolute values):

Celsius: [0, 10, 20, 30, 40]

Fahrenheit: [32, 50, 68, 86, 104]

The sample standard deviations are 15.81 and 28.46, respectively. The CV of the first set is 15.81/20 = 79%. For the second set (which are the same temperatures) it is 28.46/68 = 42%.

If, for example, the data sets are temperature readings from two different sensors (a Celsius sensor and a Fahrenheit sensor) and you want to know which sensor is better by picking the one with the least variance, then you will be misled if you use CV. The problem here is that you have divided by a relative value rather than an absolute.

Comparing the same data set, now in absolute units:

Kelvin: [273.15, 283.15, 293.15, 303.15, 313.15]

Rankine: [491.67, 509.67, 527.67, 545.67, 563.67]

The sample standard deviations are still 15.81 and 28.46, respectively, because the standard deviation is not affected by a constant offset. The coefficients of variation, however, are now both equal to 5.39%.

Mathematically speaking, the coefficient of variation is not entirely linear. That is, for a random variable , the coefficient of variation of is equal to the coefficient of variation of only when . In the above example, Celsius can only be converted to Fahrenheit through a linear transformation of the form with , whereas Kelvins can be converted to Rankines through a transformation of the form .

Distribution

Provided that negative and small positive values of the sample mean occur with negligible frequency, the probability distribution of the coefficient of variation for a sample of size of i.i.d. normal random variables has been shown by Hendricks and Robey to be [29]

where the symbol indicates that the summation is over only even values of , i.e., if is odd, sum over even values of and if is even, sum only over odd values of .

This is useful, for instance, in the construction of hypothesis tests or confidence intervals. Statistical inference for the coefficient of variation in normally distributed data is often based on McKay's chi-square approximation for the coefficient of variation [30] [31] [32] [33] [34] [35] . Methods for

Alternative

Liu (2012) reviews methods for the construction of a confidence interval for the coefficient of variation [36] . Notably, Lehmann (1986) derived the sampling distribution for the coefficient of variation using a non-central t-distribution to give an exact method for the construction of the CI [37] .

Similar ratios

Standardized moments are similar ratios, where is the kth moment about the mean, which are also dimensionless and scale invariant. The variance-to-mean ratio, , is another similar ratio, but is not dimensionless, and hence not scale invariant. See Normalization (statistics) for further ratios.

In signal processing, particularly image processing, the reciprocal ratio (or its square) is referred to as the signal-to-noise ratio in general and signal-to-noise ratio (imaging) in particular.

Other related ratios include:

See also

Related Research Articles

In probability theory and statistics, kurtosis is a measure of the "tailedness" of the probability distribution of a real-valued random variable. Like skewness, kurtosis describes a particular aspect of a probability distribution. There are different ways to quantify kurtosis for a theoretical distribution, and there are corresponding ways of estimating it using a sample from a population. Different measures of kurtosis may have different interpretations.

<span class="mw-page-title-main">Normal distribution</span> Probability distribution

In statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable. The general form of its probability density function is

<span class="mw-page-title-main">Standard deviation</span> In statistics, a measure of variation

In statistics, the standard deviation is a measure of the amount of variation of a random variable expected about its mean. A low standard deviation indicates that the values tend to be close to the mean of the set, while a high standard deviation indicates that the values are spread out over a wider range.

<span class="mw-page-title-main">Skewness</span> Measure of the asymmetry of random variables

In probability theory and statistics, skewness is a measure of the asymmetry of the probability distribution of a real-valued random variable about its mean. The skewness value can be positive, zero, negative, or undefined.

<span class="mw-page-title-main">Variance</span> Statistical measure of how far values spread from their average

In probability theory and statistics, variance is the expected value of the squared deviation from the mean of a random variable. The standard deviation (SD) is obtained as the square root of the variance. Variance is a measure of dispersion, meaning it is a measure of how far a set of numbers is spread out from their average value. It is the second central moment of a distribution, and the covariance of the random variable with itself, and it is often represented by , , , , or .

<span class="mw-page-title-main">Log-normal distribution</span> Probability distribution

In probability theory, a log-normal (or lognormal) distribution is a continuous probability distribution of a random variable whose logarithm is normally distributed. Thus, if the random variable X is log-normally distributed, then Y = ln(X) has a normal distribution. Equivalently, if Y has a normal distribution, then the exponential function of Y, X = exp(Y), has a log-normal distribution. A random variable which is log-normally distributed takes only positive real values. It is a convenient and useful model for measurements in exact and engineering sciences, as well as medicine, economics and other topics (e.g., energies, concentrations, lengths, prices of financial instruments, and other metrics).

<span class="mw-page-title-main">Student's t-distribution</span> Probability distribution

In probability and statistics, Student's t distribution is a continuous probability distribution that generalizes the standard normal distribution. Like the latter, it is symmetric around zero and bell-shaped.

<span class="mw-page-title-main">Correlation</span> Statistical concept

In statistics, correlation or dependence is any statistical relationship, whether causal or not, between two random variables or bivariate data. Although in the broadest sense, "correlation" may indicate any type of association, in statistics it usually refers to the degree to which a pair of variables are linearly related. Familiar examples of dependent phenomena include the correlation between the height of parents and their offspring, and the correlation between the price of a good and the quantity the consumers are willing to purchase, as it is depicted in the so-called demand curve.

In probability theory and statistics, a standardized moment of a probability distribution is a moment that is normalized, typically by a power of the standard deviation, rendering the moment scale invariant. The shape of different probability distributions can be compared using standardized moments.

<span class="mw-page-title-main">Pearson correlation coefficient</span> Measure of linear correlation

In statistics, the Pearson correlation coefficient (PCC) is a correlation coefficient that measures linear correlation between two sets of data. It is the ratio between the covariance of two variables and the product of their standard deviations; thus, it is essentially a normalized measurement of the covariance, such that the result always has a value between −1 and 1. As with covariance itself, the measure can only reflect a linear correlation of variables, and ignores many other types of relationships or correlations. As a simple example, one would expect the age and height of a sample of teenagers from a high school to have a Pearson correlation coefficient significantly greater than 0, but less than 1.

<span class="mw-page-title-main">Standard score</span> How many standard deviations apart from the mean an observed datum is

In statistics, the standard score is the number of standard deviations by which the value of a raw score is above or below the mean value of what is being observed or measured. Raw scores above the mean have positive standard scores, while those below the mean have negative standard scores.

In statistics, an effect size is a value measuring the strength of the relationship between two variables in a population, or a sample-based estimate of that quantity. It can refer to the value of a statistic calculated from a sample of data, the value of a parameter for a hypothetical population, or to the equation that operationalizes how statistics or parameters lead to the effect size value. Examples of effect sizes include the correlation between two variables, the regression coefficient in a regression, the mean difference, or the risk of a particular event happening. Effect sizes complement statistical hypothesis testing, and play an important role in power analyses, sample size planning, and in meta-analyses. The cluster of data-analysis methods concerning effect sizes is referred to as estimation statistics.

In statistical inference, specifically predictive inference, a prediction interval is an estimate of an interval in which a future observation will fall, with a certain probability, given what has already been observed. Prediction intervals are often used in regression analysis.

In statistics, propagation of uncertainty is the effect of variables' uncertainties on the uncertainty of a function based on them. When the variables are the values of experimental measurements they have uncertainties due to measurement limitations which propagate due to the combination of variables in the function.

In statistics, a pivotal quantity or pivot is a function of observations and unobservable parameters such that the function's probability distribution does not depend on the unknown parameters. A pivot quantity need not be a statistic—the function and its value can depend on the parameters of the model, but its distribution must not. If it is a statistic, then it is known as an ancillary statistic.

In statistics, the median absolute deviation (MAD) is a robust measure of the variability of a univariate sample of quantitative data. It can also refer to the population parameter that is estimated by the MAD calculated from a sample.

In statistics and in particular statistical theory, unbiased estimation of a standard deviation is the calculation from a statistical sample of an estimated value of the standard deviation of a population of values, in such a way that the expected value of the calculation equals the true value. Except in some important situations, outlined later, the task has little relevance to applications of statistics since its need is avoided by standard procedures, such as the use of significance tests and confidence intervals, or by using Bayesian analysis.

In probability theory and statistics, the index of dispersion, dispersion index,coefficient of dispersion,relative variance, or variance-to-mean ratio (VMR), like the coefficient of variation, is a normalized measure of the dispersion of a probability distribution: it is a measure used to quantify whether a set of observed occurrences are clustered or dispersed compared to a standard statistical model.

In statistics and probability theory, the nonparametric skew is a statistic occasionally used with random variables that take real values. It is a measure of the skewness of a random variable's distribution—that is, the distribution's tendency to "lean" to one side or the other of the mean. Its calculation does not require any knowledge of the form of the underlying distribution—hence the name nonparametric. It has some desirable properties: it is zero for any symmetric distribution; it is unaffected by a scale shift; and it reveals either left- or right-skewness equally well. In some statistical samples it has been shown to be less powerful than the usual measures of skewness in detecting departures of the population from normality.

<span class="mw-page-title-main">ProbOnto</span> Knowledge base and ontology of probability distributions

ProbOnto is a knowledge base and ontology of probability distributions. ProbOnto 2.5 contains over 150 uni- and multivariate distributions and alternative parameterizations, more than 220 relationships and re-parameterization formulas, supporting also the encoding of empirical and univariate mixture distributions.

References

  1. Everitt, Brian (1998). The Cambridge Dictionary of Statistics . Cambridge, UK New York: Cambridge University Press. ISBN   978-0521593465.
  2. "What is the difference between ordinal, interval and ratio variables? Why should I care?". GraphPad Software Inc. Archived from the original on 15 December 2008. Retrieved 22 February 2008.
  3. Odic, Darko; Im, Hee Yeon; Eisinger, Robert; Ly, Ryan; Halberda, Justin (June 2016). "PsiMLE: A maximum-likelihood estimation approach to estimating psychophysical scaling and variability more reliably, efficiently, and flexibly". Behavior Research Methods. 48 (2): 445–462. doi: 10.3758/s13428-015-0600-5 . ISSN   1554-3528. PMID   25987306.
  4. Sokal RR & Rohlf FJ. Biometry (3rd Ed). New York: Freeman, 1995. p. 58. ISBN   0-7167-2411-1
  5. Limpert, Eckhard; Stahel, Werner A.; Abbt, Markus (2001). "Log-normal Distributions across the Sciences: Keys and Clues". BioScience. 51 (5): 341–352. doi: 10.1641/0006-3568(2001)051[0341:LNDATS]2.0.CO;2 .
  6. Koopmans, L. H.; Owen, D. B.; Rosenblatt, J. I. (1964). "Confidence intervals for the coefficient of variation for the normal and log normal distributions". Biometrika. 51 (1–2): 25–32. doi:10.1093/biomet/51.1-2.25.
  7. Diletti, E; Hauschke, D; Steinijans, VW (1992). "Sample size determination for bioequivalence assessment by means of confidence intervals". International Journal of Clinical Pharmacology, Therapy, and Toxicology. 30 (Suppl 1): S51–8. PMID   1601532.
  8. Julious, Steven A.; Debarnot, Camille A. M. (2000). "Why Are Pharmacokinetic Data Summarized by Arithmetic Means?". Journal of Biopharmaceutical Statistics. 10 (1): 55–71. doi:10.1081/BIP-100101013. PMID   10709801. S2CID   2805094.
  9. Reed, JF; Lynn, F; Meade, BD (2002). "Use of Coefficient of Variation in Assessing Variability of Quantitative Assays". Clin Diagn Lab Immunol. 9 (6): 1235–1239. doi:10.1128/CDLI.9.6.1235-1239.2002. PMC   130103 . PMID   12414755.
  10. Sawant,S.; Mohan, N. (2011) "FAQ: Issues with Efficacy Analysis of Clinical Trial Data Using SAS" Archived 24 August 2011 at the Wayback Machine , PharmaSUG2011, Paper PO08
  11. Schiff, MH; et al. (2014). "Head-to-head, randomised, crossover study of oral versus subcutaneous methotrexate in patients with rheumatoid arthritis: drug-exposure limitations of oral methotrexate at doses >=15 mg may be overcome with subcutaneous administration". Ann Rheum Dis. 73 (8): 1–3. doi:10.1136/annrheumdis-2014-205228. PMC   4112421 . PMID   24728329.
  12. Kirkwood, TBL (1979). "Geometric means and measures of dispersion". Biometrics. 35 (4): 908–9. JSTOR   2530139.
  13. Broverman, Samuel A. (2001). Actex study manual, Course 1, Examination of the Society of Actuaries, Exam 1 of the Casualty Actuarial Society (2001 ed.). Winsted, CT: Actex Publications. p. 104. ISBN   9781566983969 . Retrieved 7 June 2014.
  14. "Measuring Degree of Mixing - Homogeneity of powder mix - Mixture quality - PowderProcess.net". www.powderprocess.net. Archived from the original on 14 November 2017. Retrieved 2 May 2018.
  15. Banka, A; Dumont, B; Franklin, J; Klemm, G; Mudry, R (2018). "Improved Methodology for Accurate CFD and Physical Modeling of ESPs" (PDF). International Society of Electrostatic Precipitation (ISESP) Conference 2018.
  16. "F7 - Fabric Filter Gas Flow Model Studies" (PDF). Institute of Clean Air Companies (ICAC). 1996.
  17. Rodbard, D (October 1974). "Statistical quality control and routine data processing for radioimmunoassays and immunoradiometric assays". Clinical Chemistry. 20 (10): 1255–70. doi: 10.1093/clinchem/20.10.1255 . PMID   4370388.
  18. Eisenberg, Dan (2015). "Improving qPCR telomere length assays: Controlling for well position effects increases statistical power". American Journal of Human Biology. 27 (4): 570–5. doi:10.1002/ajhb.22690. PMC   4478151 . PMID   25757675.
  19. Eisenberg, Dan T. A. (30 August 2016). "Telomere length measurement validity: the coefficient of variation is invalid and cannot be used to compare quantitative polymerase chain reaction and Southern blot telomere length measurement technique". International Journal of Epidemiology. 45 (4): 1295–1298. doi: 10.1093/ije/dyw191 . ISSN   0300-5771. PMID   27581804.
  20. Champernowne, D. G.; Cowell, F. A. (1999). Economic Inequality and Income Distribution. Cambridge University Press.
  21. Campano, F.; Salvatore, D. (2006). Income distribution. Oxford University Press.
  22. 1 2 3 4 5 Bellu, Lorenzo Giovanni; Liberati, Paolo (2006). "Policy Impacts on Inequality – Simple Inequality Measures" (PDF). EASYPol, Analytical tools. Policy Support Service, Policy Assistance Division, FAO. Archived (PDF) from the original on 5 August 2016. Retrieved 13 June 2016.
  23. Eerkens, Jelmer W.; Bettinger, Robert L. (July 2001). "Techniques for Assessing Standardization in Artifact Assemblages: Can We Scale Material Variability?". American Antiquity. 66 (3): 493–504. doi:10.2307/2694247. JSTOR   2694247. S2CID   163507589.
  24. Roux, Valentine (2003). "Ceramic Standardization and Intensity of Production: Quantifying Degrees of Specialization". American Antiquity. 68 (4): 768–782. doi:10.2307/3557072. ISSN   0002-7316. JSTOR   3557072. S2CID   147444325.
  25. Bettinger, Robert L.; Eerkens, Jelmer (April 1999). "Point Typologies, Cultural Transmission, and the Spread of Bow-and-Arrow Technology in the Prehistoric Great Basin". American Antiquity. 64 (2): 231–242. doi:10.2307/2694276. JSTOR   2694276. S2CID   163198451.
  26. Wang, Li-Ying; Marwick, Ben (October 2020). "Standardization of ceramic shape: A case study of Iron Age pottery from northeastern Taiwan". Journal of Archaeological Science: Reports. 33: 102554. Bibcode:2020JArSR..33j2554W. doi:10.1016/j.jasrep.2020.102554. S2CID   224904703.
  27. Krishnamoorthy, K.; Lee, Meesook (February 2014). "Improved tests for the equality of normal coefficients of variation". Computational Statistics. 29 (1–2): 215–232. doi:10.1007/s00180-013-0445-2. S2CID   120898013.
  28. Marwick, Ben; Krishnamoorthy, K (2019). cvequality: Tests for the equality of coefficients of variation from multiple groups. R package version 0.2.0.
  29. Hendricks, Walter A.; Robey, Kate W. (1936). "The Sampling Distribution of the Coefficient of Variation". The Annals of Mathematical Statistics. 7 (3): 129–32. doi: 10.1214/aoms/1177732503 . JSTOR   2957564.
  30. Iglevicz, Boris; Myers, Raymond (1970). "Comparisons of approximations to the percentage points of the sample coefficient of variation". Technometrics. 12 (1): 166–169. doi:10.2307/1267363. JSTOR   1267363.
  31. Bennett, B. M. (1976). "On an Approximate Test for Homogeneity of Coefficients of Variation". Contribution to Applied Statistics. Experientia Supplementum. Vol. 22. pp. 169–171. doi:10.1007/978-3-0348-5513-6_16. ISBN   978-3-0348-5515-0.
  32. Vangel, Mark G. (1996). "Confidence intervals for a normal coefficient of variation". The American Statistician. 50 (1): 21–26. doi:10.1080/00031305.1996.10473537. JSTOR   2685039..
  33. Feltz, Carol J; Miller, G. Edward (1996). "An asymptotic test for the equality of coefficients of variation from k populations". Statistics in Medicine. 15 (6): 647. doi:10.1002/(SICI)1097-0258(19960330)15:6<647::AID-SIM184>3.0.CO;2-P. PMID   8731006.
  34. Forkman, Johannes (2009). "Estimator and tests for common coefficients of variation in normal distributions" (PDF). Communications in Statistics – Theory and Methods. 38 (2): 21–26. doi:10.1080/03610920802187448. S2CID   29168286. Archived (PDF) from the original on 6 December 2013. Retrieved 23 September 2013.
  35. Krishnamoorthy, K; Lee, Meesook (2013). "Improved tests for the equality of normal coefficients of variation". Computational Statistics. 29 (1–2): 215–232. doi:10.1007/s00180-013-0445-2. S2CID   120898013.
  36. Liu, Shuang (2012). Confidence Interval Estimation for Coefficient of Variation (Thesis). Georgia State University. p.3. Archived from the original on 1 March 2014. Retrieved 25 February 2014.
  37. Lehmann, E. L. (1986). Testing Statistical Hypothesis. 2nd ed. New York: Wiley.