First-hitting-time model

Last updated

More colloquially, a first passage time in a stochastic system, is the time taken for a state variable to reach a certain value. Understanding this metric allows one to further understand the physical system under observation, and as such has been the topic of research in very diverse fields, from economics to ecology. [1]

Contents

The idea that a first hitting time of a stochastic process might describe the time to occurrence of an event has a long history, starting with an interest in the first passage time of Wiener diffusion processes in economics and then in physics in the early 1900s. [2] [3] [4] Modeling the probability of financial ruin as a first passage time was an early application in the field of insurance. [5] An interest in the mathematical properties of first-hitting-times and statistical models and methods for analysis of survival data appeared steadily between the middle and end of the 20th century. [6] [7] [8] [9] [10]

Examples

A common example of a first-hitting-time model is a ruin problem, such as Gambler's ruin. In this example, an entity (often described as a gambler or an insurance company) has an amount of money which varies randomly with time, possibly with some drift. The model considers the event that the amount of money reaches 0, representing bankruptcy. The model can answer questions such as the probability that this occurs within finite time, or the mean time until which it occurs.

First-hitting-time models can be applied to expected lifetimes, of patients or mechanical devices. When the process reaches an adverse threshold state for the first time, the patient dies, or the device breaks down.

A financial application of the first hitting time probability has been developed by Marcello Minenna in order to compute the minimum investment time horizon. [11] [12]

First passage time of a 1D Brownian particle

One of the simplest and omnipresent stochastic systems is that of the Brownian particle in one dimension. This system describes the motion of a particle which moves stochastically in one dimensional space, with equal probability of moving to the left or to the right. Given that Brownian motion is used often as a tool to understand more complex phenomena, it is important to understand the probability of a first passage time of the Brownian particle of reaching some position distant from its start location. This is done through the following means.

The probability density function (PDF) for a particle in one dimension is found by solving the one-dimensional diffusion equation. (This equation states that the position probability density diffuses outward over time. It is analogous to say, cream in a cup of coffee if the cream was all contained within some small location initially. After a long time the cream has diffused throughout the entire drink evenly.) Namely,

given the initial condition ; where is the position of the particle at some given time, is the tagged particle's initial position, and is the diffusion constant with the S.I. units (an indirect measure of the particle's speed). The bar in the argument of the instantaneous probability refers to the conditional probability. The diffusion equation states that the rate of change over time in the probability of finding the particle at position depends on the deceleration over distance of such probability at that position.

It can be shown that the one-dimensional PDF is

This states that the probability of finding the particle at is Gaussian, and the width of the Gaussian is time dependent. More specifically the Full Width at Half Maximum (FWHM) – technically, this is actually the Full Duration at Half Maximum as the independent variable is time – scales like

Using the PDF one is able to derive the average of a given function, , at time :

where the average is taken over all space (or any applicable variable).

The First Passage Time Density (FPTD) is the probability that a particle has first reached a point at exactly time (not at some time during the interval up to ). This probability density is calculable from the Survival probability (a more common probability measure in statistics). Consider the absorbing boundary condition (The subscript c for the absorption point is an abbreviation for cliff used in many texts as an analogy to an absorption point). The PDF satisfying this boundary condition is given by

for . The survival probability, the probability that the particle has remained at a position for all times up to , is given by

where is the error function. The relation between the Survival probability and the FPTD is as follows: the probability that a particle has reached the absorption point between times and is . If one uses the first-order Taylor approximation, the definition of the FPTD follows):

By using the diffusion equation and integrating, the explicit FPTD is

The first-passage time for a Brownian particle therefore follows a Lévy distribution.

For , it follows from above that

where . This equation states that the probability for a Brownian particle achieving a first passage at some long time (defined in the paragraph above) becomes increasingly small, but is always finite.

The first moment of the FPTD diverges (as it is a so-called heavy-tailed distribution), therefore one cannot calculate the average FPT, so instead, one can calculate the typical time, the time when the FPTD is at a maximum (), i.e.,

First-hitting-time applications in many families of stochastic processes

First hitting times are central features of many families of stochastic processes, including Poisson processes, Wiener processes, gamma processes, and Markov chains, to name but a few. The state of the stochastic process may represent, for example, the strength of a physical system, the health of an individual, or the financial condition of a business firm. The system, individual or firm fails or experiences some other critical endpoint when the process reaches a threshold state for the first time. The critical event may be an adverse event (such as equipment failure, congested heart failure, or lung cancer) or a positive event (such as recovery from illness, discharge from hospital stay, child birth, or return to work after traumatic injury). The lapse of time until that critical event occurs is usually interpreted generically as a ‘survival time’. In some applications, the threshold is a set of multiple states so one considers competing first hitting times for reaching the first threshold in the set, as is the case when considering competing causes of failure in equipment or death for a patient.

Threshold regression: first-hitting-time regression

Practical applications of theoretical models for first hitting times often involve regression structures. When first hitting time models are equipped with regression structures, accommodating covariate data, we call such regression structure threshold regression. [13] The threshold state, parameters of the process, and even time scale may depend on corresponding covariates. Threshold regression as applied to time-to-event data has emerged since the start of this century and has grown rapidly, as described in a 2006 survey article [13] and its references. Connections between threshold regression models derived from first hitting times and the ubiquitous Cox proportional hazards regression model [14] was investigated in. [15] Applications of threshold regression range over many fields, including the physical and natural sciences, engineering, social sciences, economics and business, agriculture, health and medicine. [16] [17] [18] [19] [20]

Latent vs observable

In many real world applications, a first-hitting-time (FHT) model has three underlying components: (1) a parent stochastic process, which might be latent, (2) a threshold (or the barrier) and (3) a time scale. The first hitting time is defined as the time when the stochastic process first reaches the threshold. It is very important to distinguish whether the sample path of the parent process is latent (i.e., unobservable) or observable, and such distinction is a characteristic of the FHT model. By far, latent processes are most common. To give an example, we can use a Wiener process as the parent stochastic process. Such Wiener process can be defined with the mean parameter , the variance parameter , and the initial value .

Operational or analytical time scale

The time scale of the stochastic process may be calendar or clock time or some more operational measure of time progression, such as mileage of a car, accumulated wear and tear on a machine component or accumulated exposure to toxic fumes. In many applications, the stochastic process describing the system state is latent or unobservable and its properties must be inferred indirectly from censored time-to-event data and/or readings taken over time on correlated processes, such as marker processes. The word ‘regression’ in threshold regression refers to first-hitting-time models in which one or more regression structures are inserted into the model in order to connect model parameters to explanatory variables or covariates. The parameters given regression structures may be parameters of the stochastic process, the threshold state and/or the time scale itself.

See also

Related Research Articles

<span class="mw-page-title-main">Brownian motion</span> Random motion of particles suspended in a fluid

Brownian motion is the random motion of particles suspended in a medium.

In physics, a Langevin equation is a stochastic differential equation describing how a system evolves when subjected to a combination of deterministic and fluctuating ("random") forces. The dependent variables in a Langevin equation typically are collective (macroscopic) variables changing only slowly in comparison to the other (microscopic) variables of the system. The fast (microscopic) variables are responsible for the stochastic nature of the Langevin equation. One application is to Brownian motion, which models the fluctuating motion of a small particle in a fluid.

<span class="mw-page-title-main">Fokker–Planck equation</span> Partial differential equation

In statistical mechanics and information theory, the Fokker–Planck equation is a partial differential equation that describes the time evolution of the probability density function of the velocity of a particle under the influence of drag forces and random forces, as in Brownian motion. The equation can be generalized to other observables as well. The Fokker–Planck equation has multiple applications in information theory, graph theory, data science, finance, economics etc.

<span class="mw-page-title-main">Geometric Brownian motion</span> Continuous stochastic process

A geometric Brownian motion (GBM) (also known as exponential Brownian motion) is a continuous-time stochastic process in which the logarithm of the randomly varying quantity follows a Brownian motion (also called a Wiener process) with drift. It is an important example of stochastic processes satisfying a stochastic differential equation (SDE); in particular, it is used in mathematical finance to model stock prices in the Black–Scholes model.

In probability theory and statistics, a Gaussian process is a stochastic process, such that every finite collection of those random variables has a multivariate normal distribution. The distribution of a Gaussian process is the joint distribution of all those random variables, and as such, it is a distribution over functions with a continuous domain, e.g. time or space.

<span class="mw-page-title-main">Girsanov theorem</span> Theorem on changes in stochastic processes

In probability theory, Girsanov's theorem or the Cameron-Martin-Girsanov theorem tells how stochastic processes change under changes in measure. The theorem is especially important in the theory of financial mathematics as it tells how to convert from the physical measure, which describes the probability that an underlying instrument will take a particular value or values, to the risk-neutral measure which is a very useful tool for evaluating the value of derivatives on the underlying.

<span class="mw-page-title-main">Path integral formulation</span> Formulation of quantum mechanics

The path integral formulation is a description in quantum mechanics that generalizes the stationary action principle of classical mechanics. It replaces the classical notion of a single, unique classical trajectory for a system with a sum, or functional integral, over an infinity of quantum-mechanically possible trajectories to compute a quantum amplitude.

The Feynman–Kac formula, named after Richard Feynman and Mark Kac, establishes a link between parabolic partial differential equations and stochastic processes. In 1947, when Kac and Feynman were both faculty members at Cornell University, Kac attended a presentation of Feynman's and remarked that the two of them were working on the same thing from different directions. The Feynman–Kac formula resulted, which proves rigorously the real-valued case of Feynman's path integrals. The complex case, which occurs when a particle's spin is included, is still an open question.

<span class="mw-page-title-main">Ornstein–Uhlenbeck process</span> Stochastic process modeling random walk with friction

In mathematics, the Ornstein–Uhlenbeck process is a stochastic process with applications in financial mathematics and the physical sciences. Its original application in physics was as a model for the velocity of a massive Brownian particle under the influence of friction. It is named after Leonard Ornstein and George Eugene Uhlenbeck.

<span class="mw-page-title-main">Inverse Gaussian distribution</span> Family of continuous probability distributions

In probability theory, the inverse Gaussian distribution is a two-parameter family of continuous probability distributions with support on (0,∞).

In mathematics, Doob's martingale inequality, also known as Kolmogorov’s submartingale inequality is a result in the study of stochastic processes. It gives a bound on the probability that a submartingale exceeds any given value over a given interval of time. As the name suggests, the result is usually given in the case that the process is a martingale, but the result is also valid for submartingales.

In mathematics — specifically, in stochastic analysis — the infinitesimal generator of a Feller process is a Fourier multiplier operator that encodes a great deal of information about the process.

<span class="mw-page-title-main">Biological neuron model</span> Mathematical descriptions of the properties of certain cells in the nervous system

Biological neuron models, also known as spiking neuron models, are mathematical descriptions of the conduction of electrical signals in neurons. Neurons are electrically excitable cells within the nervous system, able to fire electric signals, called action potentials, across a neural network. These mathematical models describe the role of the biophysical and geometrical characteristics of neurons on the conduction of electrical activity.

In probability and statistics, the Tweedie distributions are a family of probability distributions which include the purely continuous normal, gamma and inverse Gaussian distributions, the purely discrete scaled Poisson distribution, and the class of compound Poisson–gamma distributions which have positive mass at zero, but are otherwise continuous. Tweedie distributions are a special case of exponential dispersion models and are often used as distributions for generalized linear models.

Stochastic mechanics is a framework for describing the dynamics of particles that are subjected to an intrinsic random processes as well as various external forces. The framework provides a derivation of the diffusion equations associated to these stochastic particles. It is best known for its derivation of the Schrödinger equation as the Kolmogorov equation for a certain type of conservative diffusion, and for this purpose it is also referred to as stochastic quantum mechanics.

The Monte Carlo method for electron transport is a semiclassical Monte Carlo (MC) approach of modeling semiconductor transport. Assuming the carrier motion consists of free flights interrupted by scattering mechanisms, a computer is utilized to simulate the trajectories of particles as they move across the device under the influence of an electric field using classical mechanics. The scattering events and the duration of particle flight is determined through the use of random numbers.

In statistical mechanics, the mean squared displacement is a measure of the deviation of the position of a particle with respect to a reference position over time. It is the most common measure of the spatial extent of random motion, and can be thought of as measuring the portion of the system "explored" by the random walker. In the realm of biophysics and environmental engineering, the Mean Squared Displacement is measured over time to determine if a particle is spreading slowly due to diffusion, or if an advective force is also contributing. Another relevant concept, the variance-related diameter, is also used in studying the transportation and mixing phenomena in the realm of environmental engineering. It prominently appears in the Debye–Waller factor and in the Langevin equation.

In probability theory, an interacting particle system (IPS) is a stochastic process on some configuration space given by a site space, a countably-infinite-order graph and a local state space, a compact metric space . More precisely IPS are continuous-time Markov jump processes describing the collective behavior of stochastically interacting components. IPS are the continuous-time analogue of stochastic cellular automata.

In probability theory, a McKean–Vlasov process is a stochastic process described by a stochastic differential equation where the coefficients of the diffusion depend on the distribution of the solution itself. The equations are a model for Vlasov equation and were first studied by Henry McKean in 1966. It is an example of propagation of chaos, in that it can be obtained as a limit of a mean-field system of interacting particles: as the number of particles tends to infinity, the interactions between any single particle and the rest of the pool will only depend on the particle itself.

The redundancy principle in biology expresses the need of many copies of the same entity to fulfill a biological function. Examples are numerous: disproportionate numbers of spermatozoa during fertilization compared to one egg, large number of neurotransmitters released during neuronal communication compared to the number of receptors, large numbers of released calcium ions during transient in cells, and many more in molecular and cellular transduction or gene activation and cell signaling. This redundancy is particularly relevant when the sites of activation are physically separated from the initial position of the molecular messengers. The redundancy is often generated for the purpose of resolving the time constraint of fast-activating pathways. It can be expressed in terms of the theory of extreme statistics to determine its laws and quantify how the shortest paths are selected. The main goal is to estimate these large numbers from physical principles and mathematical derivations.

References

  1. Redner, S. (2001). A guide to first-passage processes. Cambridge university press.
  2. Bachelier, L. Théorie de la spéculation. Annales scientifiques de l'École Normale Supérieure, Serie 3, Volume 17 (1900), pp. 21-86. doi : 10.24033/asens.476. http://www.numdam.org/articles/10.24033/asens.476/
  3. Von E 1900
  4. Smoluchowski 1915
  5. Lundberg, F. (1903) Approximerad Framställning av Sannolikehetsfunktionen, Återförsäkering av Kollektivrisker, Almqvist & Wiksell, Uppsala.
  6. Tweedie 1945
  7. Tweedie 1957–1
  8. Tweedie 1957–2
  9. Whitmore 1970
  10. Lancaster 1972
  11. "Extended abstract".
  12. "A Quantitative Framework to Assess the Risk-Reward Profile of non Equity Products".
  13. 1 2 Lee 2006
  14. Cox 1972
  15. Lee 2010
  16. Aaron 2010
  17. Chambaz 2014
  18. Aaron 2015
  19. He 2015
  20. Hou 2016