In statistical signal processing, the goal of spectral density estimation (SDE) or simply spectral estimation is to estimate the spectral density (also known as the power spectral density) of a signal from a sequence of time samples of the signal. [1] Intuitively speaking, the spectral density characterizes the frequency content of the signal. One purpose of estimating the spectral density is to detect any periodicities in the data, by observing peaks at the frequencies corresponding to these periodicities.
Some SDE techniques assume that a signal is composed of a limited (usually small) number of generating frequencies plus noise and seek to find the location and intensity of the generated frequencies. Others make no assumption on the number of components and seek to estimate the whole generating spectrum.
This article may need to be cleaned up. It has been merged from Frequency domain . |
Spectrum analysis, also referred to as frequency domain analysis or spectral density estimation, is the technical process of decomposing a complex signal into simpler parts. As described above, many physical processes are best described as a sum of many individual frequency components. Any process that quantifies the various amounts (e.g. amplitudes, powers, intensities) versus frequency (or phase) can be called spectrum analysis.
Spectrum analysis can be performed on the entire signal. Alternatively, a signal can be broken into short segments (sometimes called frames), and spectrum analysis may be applied to these individual segments. Periodic functions (such as ) are particularly well-suited for this sub-division. General mathematical techniques for analyzing non-periodic functions fall into the category of Fourier analysis.
The Fourier transform of a function produces a frequency spectrum which contains all of the information about the original signal, but in a different form. This means that the original function can be completely reconstructed (synthesized) by an inverse Fourier transform. For perfect reconstruction, the spectrum analyzer must preserve both the amplitude and phase of each frequency component. These two pieces of information can be represented as a 2-dimensional vector, as a complex number, or as magnitude (amplitude) and phase in polar coordinates (i.e., as a phasor). A common technique in signal processing is to consider the squared amplitude, or power; in this case the resulting plot is referred to as a power spectrum.
Because of reversibility, the Fourier transform is called a representation of the function, in terms of frequency instead of time; thus, it is a frequency domain representation. Linear operations that could be performed in the time domain have counterparts that can often be performed more easily in the frequency domain. Frequency analysis also simplifies the understanding and interpretation of the effects of various time-domain operations, both linear and non-linear. For instance, only non-linear or time-variant operations can create new frequencies in the frequency spectrum.
In practice, nearly all software and electronic devices that generate frequency spectra utilize a discrete Fourier transform (DFT), which operates on samples of the signal, and which provides a mathematical approximation to the full integral solution. The DFT is almost invariably implemented by an efficient algorithm called fast Fourier transform (FFT). The array of squared-magnitude components of a DFT is a type of power spectrum called periodogram, which is widely used for examining the frequency characteristics of noise-free functions such as filter impulse responses and window functions. But the periodogram does not provide processing-gain when applied to noiselike signals or even sinusoids at low signal-to-noise ratios[ why? ]. In other words, the variance of its spectral estimate at a given frequency does not decrease as the number of samples used in the computation increases. This can be mitigated by averaging over time (Welch's method [2] ) or over frequency (smoothing). Welch's method is widely used for spectral density estimation (SDE). However, periodogram-based techniques introduce small biases that are unacceptable in some applications. So other alternatives are presented in the next section.
Many other techniques for spectral estimation have been developed to mitigate the disadvantages of the basic periodogram. These techniques can generally be divided into non-parametric, parametric, and more recently semi-parametric (also called sparse) methods. [3] The non-parametric approaches explicitly estimate the covariance or the spectrum of the process without assuming that the process has any particular structure. Some of the most common estimators in use for basic applications (e.g. Welch's method) are non-parametric estimators closely related to the periodogram. By contrast, the parametric approaches assume that the underlying stationary stochastic process has a certain structure that can be described using a small number of parameters (for example, using an auto-regressive or moving-average model). In these approaches, the task is to estimate the parameters of the model that describes the stochastic process. When using the semi-parametric methods, the underlying process is modeled using a non-parametric framework, with the additional assumption that the number of non-zero components of the model is small (i.e., the model is sparse). Similar approaches may also be used for missing data recovery [4] as well as signal reconstruction.
Following is a partial list of spectral density estimation techniques:
In parametric spectral estimation, one assumes that the signal is modeled by a stationary process which has a spectral density function (SDF) that is a function of the frequency and parameters . [8] The estimation problem then becomes one of estimating these parameters.
The most common form of parametric SDF estimate uses as a model an autoregressive model of order . [8] : 392 A signal sequence obeying a zero mean process satisfies the equation
where the are fixed coefficients and is a white noise process with zero mean and innovation variance. The SDF for this process is
with the sampling time interval and the Nyquist frequency.
There are a number of approaches to estimating the parameters of the process and thus the spectral density: [8] : 452-453
Alternative parametric methods include fitting to a moving-average model (MA) and to a full autoregressive moving-average model (ARMA).
Frequency estimation is the process of estimating the frequency, amplitude, and phase-shift of a signal in the presence of noise given assumptions about the number of the components. [10] This contrasts with the general methods above, which do not make prior assumptions about the components.
If one only wants to estimate the frequency of the single loudest pure-tone signal, one can use a pitch detection algorithm.
If the dominant frequency changes over time, then the problem becomes the estimation of the instantaneous frequency as defined in the time–frequency representation. Methods for instantaneous frequency estimation include those based on the Wigner–Ville distribution and higher order ambiguity functions. [11]
If one wants to know all the (possibly complex) frequency components of a received signal (including transmitted signal and noise), one uses a multiple-tone approach.
A typical model for a signal consists of a sum of complex exponentials in the presence of white noise,
The power spectral density of is composed of impulse functions in addition to the spectral density function due to noise.
The most common methods for frequency estimation involve identifying the noise subspace to extract these components. These methods are based on eigen decomposition of the autocorrelation matrix into a signal subspace and a noise subspace. After these subspaces are identified, a frequency estimation function is used to find the component frequencies from the noise subspace. The most popular methods of noise subspace based frequency estimation are Pisarenko's method, the multiple signal classification (MUSIC) method, the eigenvector method, and the minimum norm method.
Suppose , from to is a time series (discrete time) with zero mean. Suppose that it is a sum of a finite number of periodic components (all frequencies are positive):
The variance of is, for a zero-mean function as above, given by
If these data were samples taken from an electrical signal, this would be its average power (power is energy per unit time, so it is analogous to variance if energy is analogous to the amplitude squared).
Now, for simplicity, suppose the signal extends infinitely in time, so we pass to the limit as If the average power is bounded, which is almost always the case in reality, then the following limit exists and is the variance of the data.
Again, for simplicity, we will pass to continuous time, and assume that the signal extends infinitely in time in both directions. Then these two formulas become
and
The root mean square of is , so the variance of is Hence, the contribution to the average power of coming from the component with frequency is All these contributions add up to the average power of
Then the power as a function of frequency is and its statistical cumulative distribution function will be
is a step function, monotonically non-decreasing. Its jumps occur at the frequencies of the periodic components of , and the value of each jump is the power or variance of that component.
The variance is the covariance of the data with itself. If we now consider the same data but with a lag of , we can take the covariance of with , and define this to be the autocorrelation function of the signal (or data) :
If it exists, it is an even function of If the average power is bounded, then exists everywhere, is finite, and is bounded by which is the average power or variance of the data.
It can be shown that can be decomposed into periodic components with the same periods as :
This is in fact the spectral decomposition of over the different frequencies, and is related to the distribution of power of over the frequencies: the amplitude of a frequency component of is its contribution to the average power of the signal.
The power spectrum of this example is not continuous, and therefore does not have a derivative, and therefore this signal does not have a power spectral density function. In general, the power spectrum will usually be the sum of two parts: a line spectrum such as in this example, which is not continuous and does not have a density function, and a residue, which is absolutely continuous and does have a density function.
In probability theory and statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable. The general form of its probability density function is The parameter is the mean or expectation of the distribution, while the parameter is the variance. The standard deviation of the distribution is (sigma). A random variable with a Gaussian distribution is said to be normally distributed, and is called a normal deviate.
In signal processing, the power spectrum of a continuous time signal describes the distribution of power into frequency components composing that signal. According to Fourier analysis, any physical signal can be decomposed into a number of discrete frequencies, or a spectrum of frequencies over a continuous range. The statistical average of any sort of signal as analyzed in terms of its frequency content, is called its spectrum.
Fourier optics is the study of classical optics using Fourier transforms (FTs), in which the waveform being considered is regarded as made up of a combination, or superposition, of plane waves. It has some parallels to the Huygens–Fresnel principle, in which the wavefront is regarded as being made up of a combination of spherical wavefronts whose sum is the wavefront being studied. A key difference is that Fourier optics considers the plane waves to be natural modes of the propagation medium, as opposed to Huygens–Fresnel, where the spherical waves originate in the physical medium.
In signal processing, a periodogram is an estimate of the spectral density of a signal. The term was coined by Arthur Schuster in 1898. Today, the periodogram is a component of more sophisticated methods. It is the most common tool for examining the amplitude vs frequency characteristics of FIR filters and window functions. FFT spectrum analyzers are also implemented as a time-sequence of periodograms.
Array processing is a wide area of research in the field of signal processing that extends from the simplest form of 1 dimensional line arrays to 2 and 3 dimensional array geometries. Array structure can be defined as a set of sensors that are spatially separated, e.g. radio antenna and seismic arrays. The sensors used for a specific problem may vary widely, for example microphones, accelerometers and telescopes. However, many similarities exist, the most fundamental of which may be an assumption of wave propagation. Wave propagation means there is a systemic relationship between the signal received on spatially separated sensors. By creating a physical model of the wave propagation, or in machine learning applications a training data set, the relationships between the signals received on spatially separated sensors can be leveraged for many applications.
In mathematics, the discrete Laplace operator is an analog of the continuous Laplace operator, defined so that it has meaning on a graph or a discrete grid. For the case of a finite-dimensional graph, the discrete Laplace operator is more commonly called the Laplacian matrix.
Estimation theory is a branch of statistics that deals with estimating the values of parameters based on measured empirical data that has a random component. The parameters describe an underlying physical setting in such a way that their value affects the distribution of the measured data. An estimator attempts to approximate the unknown parameters using the measurements. In estimation theory, two approaches are generally considered:
In statistics, a probit model is a type of regression where the dependent variable can take only two values, for example married or not married. The word is a portmanteau, coming from probability + unit. The purpose of the model is to estimate the probability that an observation with particular characteristics will fall into a specific one of the categories; moreover, classifying observations based on their predicted probabilities is a type of binary classification model.
In radiometry, radiant flux or radiant power is the radiant energy emitted, reflected, transmitted, or received per unit time, and spectral flux or spectral power is the radiant flux per unit frequency or wavelength, depending on whether the spectrum is taken as a function of frequency or of wavelength. The SI unit of radiant flux is the watt (W), one joule per second, while that of spectral flux in frequency is the watt per hertz and that of spectral flux in wavelength is the watt per metre —commonly the watt per nanometre.
MUSIC is an algorithm used for frequency estimation and radio direction finding.
Geophysical survey is the systematic collection of geophysical data for spatial studies. Detection and analysis of the geophysical signals forms the core of Geophysical signal processing. The magnetic and gravitational fields emanating from the Earth's interior hold essential information concerning seismic activities and the internal structure. Hence, detection and analysis of the electric and Magnetic fields is very crucial. As the Electromagnetic and gravitational waves are multi-dimensional signals, all the 1-D transformation techniques can be extended for the analysis of these signals as well. Hence this article also discusses multi-dimensional signal processing techniques.
In signal processing, multitaper analysis is a spectral density estimation technique developed by David J. Thomson. It can estimate the power spectrum SX of a stationary ergodic finite-variance random process X, given a finite contiguous realization of X as data.
The method of reassignment is a technique for sharpening a time-frequency representation by mapping the data to time-frequency coordinates that are nearer to the true region of support of the analyzed signal. The method has been independently introduced by several parties under various names, including method of reassignment, remapping, time-frequency reassignment, and modified moving-window method. The method of reassignment sharpens blurry time-frequency data by relocating the data according to local estimates of instantaneous frequency and group delay. This mapping to reassigned time-frequency coordinates is very precise for signals that are separable in time and frequency with respect to the analysis window.
Least-squares spectral analysis (LSSA) is a method of estimating a frequency spectrum based on a least-squares fit of sinusoids to data samples, similar to Fourier analysis. Fourier analysis, the most used spectral method in science, generally boosts long-periodic noise in the long and gapped records; LSSA mitigates such problems. Unlike in Fourier analysis, data need not be equally spaced to use LSSA.
Bilinear time–frequency distributions, or quadratic time–frequency distributions, arise in a sub-field of signal analysis and signal processing called time–frequency signal processing, and, in the statistical analysis of time series data. Such methods are used where one needs to deal with a situation where the frequency composition of a signal may be changing over time; this sub-field used to be called time–frequency signal analysis, and is now more often called time–frequency signal processing due to the progress in using these methods to a wide range of signal-processing problems.
In time series analysis, singular spectrum analysis (SSA) is a nonparametric spectral estimation method. It combines elements of classical time series analysis, multivariate statistics, multivariate geometry, dynamical systems and signal processing. Its roots lie in the classical Karhunen (1946)–Loève spectral decomposition of time series and random fields and in the Mañé (1981)–Takens (1981) embedding theorem. SSA can be an aid in the decomposition of time series into a sum of components, each having a meaningful interpretation. The name "singular spectrum analysis" relates to the spectrum of eigenvalues in a singular value decomposition of a covariance matrix, and not directly to a frequency domain decomposition.
In statistics, signal processing, and time series analysis, a sinusoidal model is used to approximate a sequence Yi to a sine function:
Kernel density estimation is a nonparametric technique for density estimation i.e., estimation of probability density functions, which is one of the fundamental questions in statistics. It can be viewed as a generalisation of histogram density estimation with improved statistical properties. Apart from histograms, other types of density estimators include parametric, spline, wavelet and Fourier series. Kernel density estimators were first introduced in the scientific literature for univariate data in the 1950s and 1960s and subsequently have been widely adopted. It was soon recognised that analogous estimators for multivariate data would be an important addition to multivariate statistics. Based on research carried out in the 1990s and 2000s, multivariate kernel density estimation has reached a level of maturity comparable to its univariate counterparts.
In Bayesian inference, the Bernstein–von Mises theorem provides the basis for using Bayesian credible sets for confidence statements in parametric models. It states that under some conditions, a posterior distribution converges in total variation distance to a multivariate normal distribution centered at the maximum likelihood estimator with covariance matrix given by , where is the true population parameter and is the Fisher information matrix at the true population parameter value:
Multidimension spectral estimation is a generalization of spectral estimation, normally formulated for one-dimensional signals, to multidimensional signals or multivariate data, such as wave vectors.