Non-uniform discrete Fourier transform

Last updated

In applied mathematics, the non-uniform discrete Fourier transform (NUDFT or NDFT) of a signal is a type of Fourier transform, related to a discrete Fourier transform or discrete-time Fourier transform, but in which the input signal is not sampled at equally spaced points or frequencies (or both). It is a generalization of the shifted DFT. It has important applications in signal processing, [1] magnetic resonance imaging, [2] and the numerical solution of partial differential equations. [3]

Contents

As a generalized approach for nonuniform sampling, the NUDFT allows one to obtain frequency domain information of a finite length signal at any frequency. One of the reasons to adopt the NUDFT is that many signals have their energy distributed nonuniformly in the frequency domain. Therefore, a nonuniform sampling scheme could be more convenient and useful in many digital signal processing applications. For example, the NUDFT provides a variable spectral resolution controlled by the user.

Definition

The nonuniform discrete Fourier transform transforms a sequence of complex numbers into another sequence of complex numbers defined by

 

 

 

 

(1)

where are sample points and are frequencies. Note that if and , then equation ( 1 ) reduces to the discrete Fourier transform. There are three types of NUDFTs. [4] Note that these types are not universal and different authors will refer to different types by different numbers.

A similar set of NUDFTs can be defined by substituting for in equation ( 1 ). Unlike in the uniform case, however, this substitution is unrelated to the inverse Fourier transform. The inversion of the NUDFT is a separate problem, discussed below.

Multidimensional NUDFT

The multidimensional NUDFT converts a -dimensional array of complex numbers into another -dimensional array of complex numbers defined by

where are sample points, are frequencies, and and are -dimensional vectors of indices from 0 to . The multidimensional NUDFTs of types I, II, and III are defined analogously to the 1D case. [4]

Relationship to Z-transform

The NUDFT-I can be expressed as a Z-transform. [8] The NUDFT-I of a sequence of length is

where is the Z-transform of , and are arbitrarily distinct points in the z-plane. Note that the NUDFT reduces to the DFT when the sampling points are located on the unit circle at equally spaced angles.

Expressing the above as a matrix, we get

where

Direct inversion of the NUDFT-I

As we can see, the NUDFT-I is characterized by and hence the points. If we further factorize , we can see that is nonsingular provided the points are distinct. If is nonsingular, we can get a unique inverse NUDFT-I as follows:

.

Given , we can use Gaussian elimination to solve for . However, the complexity of this method is . To solve this problem more efficiently, we first determine directly by polynomial interpolation:

.

Then are the coefficients of the above interpolating polynomial.

Expressing as the Lagrange polynomial of order , we get

where are the fundamental polynomials:

.

Expressing by the Newton interpolation method, we get

where is the divided difference of the th order of with respect to :

The disadvantage of the Lagrange representation is that any additional point included will increase the order of the interpolating polynomial, leading to the need to recompute all the fundamental polynomials. However, any additional point included in the Newton representation only requires the addition of one more term.

We can use a lower triangular system to solve :

where

By the above equation, can be computed within operations. In this way Newton interpolation is more efficient than Lagrange Interpolation unless the latter is modified by

.

Nonuniform fast Fourier transform

While a naive application of equation ( 1 ) results in an algorithm for computing the NUDFT, algorithms based on the fast Fourier transform (FFT) do exist. Such algorithms are referred to as NUFFTs or NFFTs and have been developed based on oversampling and interpolation, [9] [10] [11] [12] min-max interpolation, [2] and low-rank approximation. [13] In general, NUFFTs leverage the FFT by converting the nonuniform problem into a uniform problem (or a sequence of uniform problems) to which the FFT can be applied. [4] Software libraries for performing NUFFTs are available in 1D, 2D, and 3D. [7] [6] [14] [15] [16] [17]

Applications

The applications of the NUDFT include:

See also

Related Research Articles

<span class="mw-page-title-main">Autocorrelation</span> Correlation of a signal with a time-shifted copy of itself, as a function of shift

Autocorrelation, sometimes known as serial correlation in the discrete time case, is the correlation of a signal with a delayed copy of itself as a function of delay. Informally, it is the similarity between observations of a random variable as a function of the time lag between them. The analysis of autocorrelation is a mathematical tool for finding repeating patterns, such as the presence of a periodic signal obscured by noise, or identifying the missing fundamental frequency in a signal implied by its harmonic frequencies. It is often used in signal processing for analyzing functions or series of values, such as time domain signals.

<span class="mw-page-title-main">Discrete Fourier transform</span> Type of Fourier transform in discrete mathematics

In mathematics, the discrete Fourier transform (DFT) converts a finite sequence of equally-spaced samples of a function into a same-length sequence of equally-spaced samples of the discrete-time Fourier transform (DTFT), which is a complex-valued function of frequency. The interval at which the DTFT is sampled is the reciprocal of the duration of the input sequence. An inverse DFT (IDFT) is a Fourier series, using the DTFT samples as coefficients of complex sinusoids at the corresponding DTFT frequencies. It has the same sample-values as the original input sequence. The DFT is therefore said to be a frequency domain representation of the original input sequence. If the original sequence spans all the non-zero values of a function, its DTFT is continuous, and the DFT provides discrete samples of one cycle. If the original sequence is one cycle of a periodic function, the DFT provides all the non-zero values of one DTFT cycle.

<span class="mw-page-title-main">Gradient</span> Multivariate derivative (mathematics)

In vector calculus, the gradient of a scalar-valued differentiable function of several variables is the vector field whose value at a point gives the direction and the rate of fastest increase. The gradient transforms like a vector under change of basis of the space of variables of . If the gradient of a function is non-zero at a point , the direction of the gradient is the direction in which the function increases most quickly from , and the magnitude of the gradient is the rate of increase in that direction, the greatest absolute directional derivative. Further, a point where the gradient is the zero vector is known as a stationary point. The gradient thus plays a fundamental role in optimization theory, where it is used to minimize a function by gradient descent. In coordinate-free terms, the gradient of a function may be defined by:

In probability theory, the central limit theorem (CLT) states that, under appropriate conditions, the distribution of a normalized version of the sample mean converges to a standard normal distribution. This holds even if the original variables themselves are not normally distributed. There are several versions of the CLT, each applying in the context of different conditions.

<span class="mw-page-title-main">Fourier series</span> Decomposition of periodic functions into sums of simpler sinusoidal forms

A Fourier series is an expansion of a periodic function into a sum of trigonometric functions. The Fourier series is an example of a trigonometric series, but not all trigonometric series are Fourier series. By expressing a function as a sum of sines and cosines, many problems involving the function become easier to analyze because trigonometric functions are well understood. For example, Fourier series were first used by Joseph Fourier to find solutions to the heat equation. This application is possible because the derivatives of trigonometric functions fall into simple patterns. Fourier series cannot be used to approximate arbitrary functions, because most functions have infinitely many terms in their Fourier series, and the series do not always converge. Well-behaved functions, for example smooth functions, have Fourier series that converge to the original function. The coefficients of the Fourier series are determined by integrals of the function multiplied by trigonometric functions, described in Common forms of the Fourier series below.

<span class="mw-page-title-main">Wave function</span> Mathematical description of the quantum state of a system

In quantum physics, a wave function is a mathematical description of the quantum state of an isolated quantum system. The most common symbols for a wave function are the Greek letters ψ and Ψ. Wave functions are complex-valued. For example, a wave function might assign a complex number to each point in a region of space. The Born rule provides the means to turn these complex probability amplitudes into actual probabilities. In one common form, it says that the squared modulus of a wave function that depends upon position is the probability density of measuring a particle as being at a given place. The integral of a wavefunction's squared modulus over all the system's degrees of freedom must be equal to 1, a condition called normalization. Since the wave function is complex-valued, only its relative phase and relative magnitude can be measured; its value does not, in isolation, tell anything about the magnitudes or directions of measurable observables. One has to apply quantum operators, whose eigenvalues correspond to sets of possible results of measurements, to the wave function ψ and calculate the statistical distributions for measurable quantities.

In linear algebra, a Toeplitz matrix or diagonal-constant matrix, named after Otto Toeplitz, is a matrix in which each descending diagonal from left to right is constant. For instance, the following matrix is a Toeplitz matrix:

In linear algebra, a Vandermonde matrix, named after Alexandre-Théophile Vandermonde, is a matrix with the terms of a geometric progression in each row: an matrix

<span class="mw-page-title-main">Kriging</span> Method of interpolation

In statistics, originally in geostatistics, kriging or Kriging, also known as Gaussian process regression, is a method of interpolation based on Gaussian process governed by prior covariances. Under suitable assumptions of the prior, kriging gives the best linear unbiased prediction (BLUP) at unsampled locations. Interpolating methods based on other criteria such as smoothness may not yield the BLUP. The method is widely used in the domain of spatial analysis and computer experiments. The technique is also known as Wiener–Kolmogorov prediction, after Norbert Wiener and Andrey Kolmogorov.

In mathematics, the Kronecker product, sometimes denoted by ⊗, is an operation on two matrices of arbitrary size resulting in a block matrix. It is a specialization of the tensor product from vectors to matrices and gives the matrix of the tensor product linear map with respect to a standard choice of basis. The Kronecker product is to be distinguished from the usual matrix multiplication, which is an entirely different operation. The Kronecker product is also sometimes called matrix direct product.

<span class="mw-page-title-main">Cross-correlation</span> Covariance and correlation

In signal processing, cross-correlation is a measure of similarity of two series as a function of the displacement of one relative to the other. This is also known as a sliding dot product or sliding inner-product. It is commonly used for searching a long signal for a shorter, known feature. It has applications in pattern recognition, single particle analysis, electron tomography, averaging, cryptanalysis, and neurophysiology. The cross-correlation is similar in nature to the convolution of two functions. In an autocorrelation, which is the cross-correlation of a signal with itself, there will always be a peak at a lag of zero, and its size will be the signal energy.

In linear algebra, a circulant matrix is a square matrix in which all rows are composed of the same elements and each row is rotated one element to the right relative to the preceding row. It is a particular kind of Toeplitz matrix.

In telecommunications, the term cyclic prefix refers to the prefixing of a symbol with a repetition of the end. The receiver is typically configured to discard the cyclic prefix samples, but the cyclic prefix serves two purposes:

In mathematics, the discrete Poisson equation is the finite difference analog of the Poisson equation. In it, the discrete Laplace operator takes the place of the Laplace operator. The discrete Poisson equation is frequently used in numerical analysis as a stand-in for the continuous Poisson equation, although it is also studied in its own right as a topic in discrete mathematics.

Phase retrieval is the process of algorithmically finding solutions to the phase problem. Given a complex signal , of amplitude , and phase :

In mathematics, the discrete Fourier transform over a ring generalizes the discrete Fourier transform (DFT), of a function whose values are commonly complex numbers, over an arbitrary ring.

In quantum computing, the quantum Fourier transform (QFT) is a linear transformation on quantum bits, and is the quantum analogue of the discrete Fourier transform. The quantum Fourier transform is a part of many quantum algorithms, notably Shor's algorithm for factoring and computing the discrete logarithm, the quantum phase estimation algorithm for estimating the eigenvalues of a unitary operator, and algorithms for the hidden subgroup problem. The quantum Fourier transform was discovered by Don Coppersmith.

Nonuniform sampling is a branch of sampling theory involving results related to the Nyquist–Shannon sampling theorem. Nonuniform sampling is based on Lagrange interpolation and the relationship between itself and the (uniform) sampling theorem. Nonuniform sampling is a generalisation of the Whittaker–Shannon–Kotelnikov (WSK) sampling theorem.

The cyclotomic fast Fourier transform is a type of fast Fourier transform algorithm over finite fields. This algorithm first decomposes a DFT into several circular convolutions, and then derives the DFT results from the circular convolution results. When applied to a DFT over , this algorithm has a very low multiplicative complexity. In practice, since there usually exist efficient algorithms for circular convolutions with specific lengths, this algorithm is very efficient.

<span class="mw-page-title-main">Complex random vector</span>

In probability theory and statistics, a complex random vector is typically a tuple of complex-valued random variables, and generally is a random variable taking values in a vector space over the field of complex numbers. If are complex-valued random variables, then the n-tuple is a complex random vector. Complex random variables can always be considered as pairs of real random vectors: their real and imaginary parts.

References

  1. Bagchi, Sonali; Mitra, Sanjit K. (1999). The Nonuniform Discrete Fourier Transform and Its Applications in Signal Processing. Boston, MA: Springer US. ISBN   978-1-4615-4925-3.
  2. 1 2 Fessler, J.A.; Sutton, B.P. (February 2003). "Nonuniform fast fourier transforms using min-max interpolation". IEEE Transactions on Signal Processing. 51 (2): 560–574. Bibcode:2003ITSP...51..560F. doi:10.1109/TSP.2002.807005. hdl: 2027.42/85840 .
  3. Lee, June-Yub; Greengard, Leslie (June 2005). "The type 3 nonuniform FFT and its applications". Journal of Computational Physics. 206 (1): 1–5. Bibcode:2005JCoPh.206....1L. doi:10.1016/j.jcp.2004.12.004.
  4. 1 2 3 Greengard, Leslie; Lee, June-Yub (January 2004). "Accelerating the Nonuniform Fast Fourier Transform". SIAM Review. 46 (3): 443–454. Bibcode:2004SIAMR..46..443G. CiteSeerX   10.1.1.227.3679 . doi:10.1137/S003614450343200X.
  5. Plonka, Gerlind; Potts, Daniel; Steidl, Gabriele; Tasche, Manfred (2019). Numerical Fourier Analysis. Birkhäuser. doi:10.1007/978-3-030-04306-3. ISBN   978-3-030-04306-3.
  6. 1 2 3 PyNUFFT Services. "Basic use of PyNUFFT — PyNUFFT 2023.2.2 documentation". pynufft.readthedocs.io. Retrieved 27 February 2024.
  7. 1 2 3 The Simons Foundation. "Mathematical definitions of transforms — finufft 2.2.0 documentation". finufft.readthedocs.io. Retrieved 27 February 2024.
  8. Marvasti, Farokh (2001). Nonuniform Sampling: Theory and Practice. New York: Springer. pp. 325–360. ISBN   978-1-4615-1229-5.
  9. Dutt, Alok (May 1993). Fast Fourier Transforms for Nonequispaced Data (PDF) (PhD). Yale University.
  10. Dutt, Alok; Rokhlin, Vladimir (November 1993). "Fast Fourier Transforms for Nonequispaced Data". SIAM Journal on Scientific Computing. 14 (6): 1368–1393. doi:10.1137/0914081.
  11. Potts, Daniel; Steidl, Gabriele (January 2003). "Fast Summation at Nonequispaced Knots by NFFT". SIAM Journal on Scientific Computing. 24 (6): 2013–2037. doi:10.1137/S1064827502400984.
  12. Boyd, John P (December 1992). "A fast algorithm for Chebyshev, Fourier, and sinc interpolation onto an irregular grid" (PDF). Journal of Computational Physics. 103 (2): 243–257. Bibcode:1992JCoPh.103..243B. doi:10.1016/0021-9991(92)90399-J. hdl: 2027.42/29694 .
  13. Ruiz-Antolín, Diego; Townsend, Alex (20 February 2018). "A Nonuniform Fast Fourier Transform Based on Low Rank Approximation" (PDF). SIAM Journal on Scientific Computing. 40 (1): A529–A547. arXiv: 1701.04492 . doi:10.1137/17M1134822. hdl:10902/13767.
  14. "NUFFT page". cims.nyu.edu.
  15. "NFFT". www.nfft.org.
  16. "MikaelSlevinsky/FastTransforms.jl". GitHub. 2019-02-13.
  17. "chebfun/chebfun". GitHub. 2019-02-07.