Analysis of covariance (ANCOVA) is a general linear model that blends ANOVA and regression. ANCOVA evaluates whether the means of a dependent variable (DV) are equal across levels of one or more categorical independent variables (IV) and across one or more continuous variables. For example, the categorical variable(s) might describe treatment and the continuous variable(s) might be covariates (CV)'s, typically nuisance variables; or vice versa. Mathematically, ANCOVA decomposes the variance in the DV into variance explained by the CV(s), variance explained by the categorical IV, and residual variance. Intuitively, ANCOVA can be thought of as 'adjusting' the DV by the group means of the CV(s). [1]
The ANCOVA model assumes a linear relationship between the response (DV) and covariate (CV):
In this equation, the DV, is the jth observation under the ith categorical group; the CV, is the jth observation of the covariate under the ith group. Variables in the model that are derived from the observed data are (the grand mean) and (the global mean for covariate ). The variables to be fitted are (the effect of the ith level of the categorical IV), (the slope of the line) and (the associated unobserved error term for the jth observation in the ith group).
Under this specification, the categorical treatment effects sum to zero The standard assumptions of the linear regression model are also assumed to hold, as discussed below. [2]
In an agricultural study, ANCOVA can be used to analyze the effect of different fertilizers () on crop yield (), while accounting for soil quality () as a covariate. Soil quality, a continuous variable, influences crop yield and may vary across plots, potentially confounding the results.
The model adjusts yield measurements for soil quality differences and evaluates whether fertilizer types differ significantly. Mathematically, this can be expressed as:
where:
In this setup, ANCOVA partitions the total variance in crop yield into variance explained by soil quality (covariate), variance explained by fertilizer type (categorical IV), and residual variance. By adjusting for soil quality, ANCOVA provides a more precise estimate of the fertilizer effect on crop yield. The constraint ensures that the categorical variable's effects are centered around zero, allowing for meaningful interpretation of group differences. It is standard in ANOVA and ANCOVA with categorical variables.
ANCOVA can be used to increase statistical power (the probability a significant difference is found between groups when one exists) by reducing the within-group error variance. [3] In order to understand this, it is necessary to understand the test used to evaluate differences between groups, the F-test. The F-test is computed by dividing the explained variance between groups (e.g., medical recovery differences) by the unexplained variance within the groups. Thus,
If this value is larger than a critical value, we conclude that there is a significant difference between groups. Unexplained variance includes error variance (e.g., individual differences), as well as the influence of other factors. Therefore, the influence of CVs is grouped in the denominator. When we control for the effect of CVs on the DV, we remove it from the denominator making F larger, thereby increasing our power to find a significant effect if one exists at all.
Another use of ANCOVA is to adjust for preexisting differences in nonequivalent (intact) groups. This controversial application aims at correcting for initial group differences (prior to group assignment) that exists on DV among several intact groups. In this situation, participants cannot be made equal through random assignment, so CVs are used to adjust scores and make participants more similar than without the CV. However, even with the use of covariates, there are no statistical techniques that can equate unequal groups. Furthermore, the CV may be so intimately related to the categorical IV that removing the variance on the DV associated with the CV would remove considerable variance on the DV, rendering the results meaningless. [4]
There are several key assumptions that underlie the use of ANCOVA and affect interpretation of the results. [2] The standard linear regression assumptions hold; further we assume that the slope of the covariate is equal across all treatment groups (homogeneity of regression slopes).
The regression relationship between the dependent variable and concomitant variables must be linear.
The error is a random variable with conditional zero mean and equal variances for different treatment classes and observations.
The errors are uncorrelated. That is, the error covariance matrix is diagonal.
The residuals (error terms) should be normally distributed ~ .
The slopes of the different regression lines should be equivalent, i.e., regression lines should be parallel among groups.
The fifth issue, concerning the homogeneity of different treatment regression slopes is particularly important in evaluating the appropriateness of ANCOVA model. Also note that we only need the error terms to be normally distributed. In fact both the independent variable and the concomitant variables will not be normally distributed in most cases.
If a CV is highly related to another CV (at a correlation of 0.5 or more), then it will not adjust the DV over and above the other CV. One or the other should be removed since they are statistically redundant.
Tested by Levene's test of equality of error variances. This is most important after adjustments have been made, but if you have it before adjustment you are likely to have it afterwards.
To see if the CV significantly interacts with the categorical IV, run an ANCOVA model including both the IV and the CVxIV interaction term. If the CVxIV interaction is significant, ANCOVA should not be performed. Instead, Green & Salkind [5] suggest assessing group differences on the DV at particular levels of the CV. Also consider using a moderated regression analysis, treating the CV and its interaction as another IV. Alternatively, one could use mediation analyses to determine if the CV accounts for the IV's effect on the DV[ citation needed ].
If the CV×IV interaction is not significant, rerun the ANCOVA without the CV×IV interaction term. In this analysis, you need to use the adjusted means and adjusted mean squared error. The adjusted means (also referred to as least squares means, LS means, estimated marginal means, or EMM) refer to the group means after controlling for the influence of the CV on the DV.
If there was a significant main effect, it means that there is a significant difference between the levels of one categorical IV, ignoring all other factors. [6] To find exactly which levels are significantly different from one another, one can use the same follow-up tests as for the ANOVA. If there are two or more IVs, there may be a significant interaction, which means that the effect of one IV on the DV changes depending on the level of another factor. One can investigate the simple main effects using the same methods as in a factorial ANOVA.
While the inclusion of a covariate into an ANOVA generally increases statistical power by accounting for some of the variance in the dependent variable and thus increasing the ratio of variance explained by the independent variables, adding a covariate into ANOVA also reduces the degrees of freedom. Accordingly, adding a covariate which accounts for very little variance in the dependent variable might actually reduce power.
Analysis of variance (ANOVA) is a collection of statistical models and their associated estimation procedures used to analyze the differences among means. ANOVA was developed by the statistician Ronald Fisher. ANOVA is based on the law of total variance, where the observed variance in a particular variable is partitioned into components attributable to different sources of variation. In its simplest form, ANOVA provides a statistical test of whether two or more population means are equal, and therefore generalizes the t-test beyond two means. In other words, the ANOVA is used to test the difference between two or more means.
Autocorrelation, sometimes known as serial correlation in the discrete time case, is the correlation of a signal with a delayed copy of itself as a function of delay. Informally, it is the similarity between observations of a random variable as a function of the time lag between them. The analysis of autocorrelation is a mathematical tool for finding repeating patterns, such as the presence of a periodic signal obscured by noise, or identifying the missing fundamental frequency in a signal implied by its harmonic frequencies. It is often used in signal processing for analyzing functions or series of values, such as time domain signals.
An F-test is any statistical test used to compare the variances of two samples or the ratio of variances between multiple samples. The test statistic, random variable F, is used to determine if the tested data has an F-distribution under the true null hypothesis, and true customary assumptions about the error term (ε). It is most often used when comparing statistical models that have been fitted to a data set, in order to identify the model that best fits the population from which the data were sampled. Exact "F-tests" mainly arise when the models have been fitted to the data using least squares. The name was coined by George W. Snedecor, in honour of Ronald Fisher. Fisher initially developed the statistic as the variance ratio in the 1920s.
In statistics, an interaction may arise when considering the relationship among three or more variables, and describes a situation in which the effect of one causal variable on an outcome depends on the state of a second causal variable. Although commonly thought of in terms of causal relationships, the concept of an interaction can also describe non-causal associations. Interactions are often considered in the context of regression analyses or factorial experiments.
In statistics, multivariate analysis of variance (MANOVA) is a procedure for comparing multivariate sample means. As a multivariate procedure, it is used when there are two or more dependent variables, and is often followed by significance tests involving individual dependent variables separately.
In statistical modeling, regression analysis is a set of statistical processes for estimating the relationships between a dependent variable and one or more error-free independent variables. The most common form of regression analysis is linear regression, in which one finds the line that most closely fits the data according to a specific mathematical criterion. For example, the method of ordinary least squares computes the unique line that minimizes the sum of squared differences between the true data and that line. For specific mathematical reasons, this allows the researcher to estimate the conditional expectation of the dependent variable when the independent variables take on a given set of values. Less common forms of regression use slightly different procedures to estimate alternative location parameters or estimate the conditional expectation across a broader collection of non-linear models.
The general linear model or general multivariate regression model is a compact way of simultaneously writing several multiple linear regression models. In that sense it is not a separate statistical linear model. The various multiple linear regression models may be compactly written as
In statistics and in particular in regression analysis, a design matrix, also known as model matrix or regressor matrix and often denoted by X, is a matrix of values of explanatory variables of a set of objects. Each row represents an individual object, with the successive columns corresponding to the variables and their specific values for that object. The design matrix is used in certain statistical models, e.g., the general linear model. It can contain indicator variables that indicate group membership in an ANOVA, or it can contain values of continuous variables.
Linear discriminant analysis (LDA), normal discriminant analysis (NDA), or discriminant function analysis is a generalization of Fisher's linear discriminant, a method used in statistics and other fields, to find a linear combination of features that characterizes or separates two or more classes of objects or events. The resulting combination may be used as a linear classifier, or, more commonly, for dimensionality reduction before later classification.
Multilevel models are statistical models of parameters that vary at more than one level. An example could be a model of student performance that contains measures for individual students as well as measures for classrooms within which the students are grouped. These models can be seen as generalizations of linear models, although they can also extend to non-linear models. These models became much more popular after sufficient computing power and software became available.
In statistics, a random effects model, also called a variance components model, is a statistical model where the model parameters are random variables. It is a kind of hierarchical linear model, which assumes that the data being analysed are drawn from a hierarchy of different populations whose differences relate to that hierarchy. A random effects model is a special case of a mixed model.
Omnibus tests are a kind of statistical test. They test whether the explained variance in a set of data is significantly greater than the unexplained variance, overall. One example is the F-test in the analysis of variance. There can be legitimate significant effects within a model even if the omnibus test is not significant. For instance, in a model with two independent variables, if only one variable exerts a significant effect on the dependent variable and the other does not, then the omnibus test may be non-significant. This fact does not affect the conclusions that may be drawn from the one significant variable. In order to test effects within an omnibus test, researchers often use contrasts.
In statistics, the intraclass correlation, or the intraclass correlation coefficient (ICC), is a descriptive statistic that can be used when quantitative measurements are made on units that are organized into groups. It describes how strongly units in the same group resemble each other. While it is viewed as a type of correlation, unlike most other correlation measures, it operates on data structured as groups rather than data structured as paired observations.
In statistics, the variance inflation factor (VIF) is the ratio (quotient) of the variance of a parameter estimate when fitting a full model that includes other parameters to the variance of the parameter estimate if the model is fit with only the parameter on its own. The VIF provides an index that measures how much the variance of an estimated regression coefficient is increased because of collinearity.
In statistics, one-way analysis of variance is a technique to compare whether two or more samples' means are significantly different. This analysis of variance technique requires a numeric response variable "Y" and a single explanatory variable "X", hence "one-way".
Multivariate analysis of covariance (MANCOVA) is an extension of analysis of covariance (ANCOVA) methods to cover cases where there is more than one dependent variable and where the control of concomitant continuous independent variables – covariates – is required. The most prominent benefit of the MANCOVA design over the simple MANOVA is the 'factoring out' of noise or error that has been introduced by the covariant. A commonly used multivariate version of the ANOVA F-statistic is Wilks' Lambda (Λ), which represents the ratio between the error variance and the effect variance.
In statistics and regression analysis, moderation occurs when the relationship between two variables depends on a third variable. The third variable is referred to as the moderator variable or simply the moderator. The effect of a moderating variable is characterized statistically as an interaction; that is, a categorical or continuous variable that is associated with the direction and/or magnitude of the relation between dependent and independent variables. Specifically within a correlational analysis framework, a moderator is a third variable that affects the zero-order correlation between two other variables, or the value of the slope of the dependent variable on the independent variable. In analysis of variance (ANOVA) terms, a basic moderator effect can be represented as an interaction between a focal independent variable and a factor that specifies the appropriate conditions for its operation.
In statistics, the two-way analysis of variance (ANOVA) is an extension of the one-way ANOVA that examines the influence of two different categorical independent variables on one continuous dependent variable. The two-way ANOVA not only aims at assessing the main effect of each independent variable but also if there is any interaction between them.
In statistics, the class of vector generalized linear models (VGLMs) was proposed to enlarge the scope of models catered for by generalized linear models (GLMs). In particular, VGLMs allow for response variables outside the classical exponential family and for more than one parameter. Each parameter can be transformed by a link function. The VGLM framework is also large enough to naturally accommodate multiple responses; these are several independent responses each coming from a particular statistical distribution with possibly different parameter values.
In statistics, a sequence of random variables is homoscedastic if all its random variables have the same finite variance; this is also known as homogeneity of variance. The complementary notion is called heteroscedasticity, also known as heterogeneity of variance. The spellings homoskedasticity and heteroskedasticity are also frequently used. “Skedasticity” comes from the Ancient Greek word “skedánnymi”, meaning “to scatter”. Assuming a variable is homoscedastic when in reality it is heteroscedastic results in unbiased but inefficient point estimates and in biased estimates of standard errors, and may result in overestimating the goodness of fit as measured by the Pearson coefficient.