In statistics, particularly in analysis of variance and linear regression, a contrast is a linear combination of variables (parameters or statistics) whose coefficients add up to zero, allowing comparison of different treatments. [1] [2]
Let be a set of variables, either parameters or statistics, and be known constants. The quantity is a linear combination. It is called a contrast if . [3] [4] Furthermore, two contrasts, and , are orthogonal if . [5]
Let us imagine that we are comparing four means, . The following table describes three possible contrasts:
1 | -1 | 0 | 0 |
0 | 0 | 1 | -1 |
1 | 1 | -1 | -1 |
The first contrast allows comparison of the first mean with the second, the second contrast allows comparison of the third mean with the fourth, and the third contrast allows comparison of the average of the first two means with the average of the last two. [4]
In a balanced one-way analysis of variance, using orthogonal contrasts has the advantage of completely partitioning the treatment sum of squares into non-overlapping additive components that represent the variation due to each contrast. [6] Consider the numbers above: each of the rows sums up to zero (hence they are contrasts). If we multiply each element of the first row by the corresponding element of the second row and add those up, this again results in zero, thus the first and second contrast are orthogonal and so on.
A contrast is defined as the sum of each group mean multiplied by a coefficient for each group (i.e., a signed number, cj). [10] In equation form, , where L is the weighted sum of group means, the cj coefficients represent the assigned weights of the means (these must sum to 0 for orthogonal contrasts), and j represents the group means. [8] Coefficients can be positive or negative, and fractions or whole numbers, depending on the comparison of interest. Linear contrasts are very useful and can be used to test complex hypotheses when used in conjunction with ANOVA or multiple regression. In essence, each contrast defines and tests for a particular pattern of differences among the means. [10]
Contrasts should be constructed "to answer specific research questions", and do not necessarily have to be orthogonal. [11]
A simple (not necessarily orthogonal) contrast is the difference between two means. A more complex contrast can test differences among several means (ex. with four means, assigning coefficients of –3, –1, +1, and +3), or test the difference between a single mean and the combined mean of several groups (e.g., if you have four means assign coefficients of –3, +1, +1, and +1) or test the difference between the combined mean of several groups and the combined mean of several other groups (i.e., with four means, assign coefficients of –1, –1, +1, and +1). [8] The coefficients for the means to be combined (or averaged) must be the same in magnitude and direction, that is, equally weighted. When means are assigned different coefficients (either in magnitude or direction, or both), the contrast is testing for a difference between those means. A contrast may be any of: the set of coefficients used to specify a comparison; the specific value of the linear combination obtained for a given study or experiment; the random quantity defined by applying the linear combination to treatment effects when these are themselves considered as random variables. In the last context, the term contrast variable is sometimes used.
Contrasts are sometimes used to compare mixed effects. A common example is the difference between two test scores — one at the beginning of the semester and one at its end. Note that we are not interested in one of these scores by itself, but only in the contrast (in this case — the difference). Since this is a linear combination of independent variables, its variance equals the weighted sum of the summands' variances; in this case both weights are one. This "blending" of two variables into one might be useful in many cases such as ANOVA, regression, or even as descriptive statistics in its own right.
An example of a complex contrast would be comparing 5 standard treatments to a new treatment, hence giving each old treatment mean a weight of 1/5, and the new sixth treatment mean a weight of −1 (using the equation above). If this new linear combination has a mean zero, this will mean that there is no evidence that the old treatments are different from the new treatment on average. If the sum of the new linear combination is positive, there is some evidence (the strength of the evidence is often associated with the p-value computed on that linear combination) that the combined mean of the 5 standard treatments is higher than the new treatment mean. Analogous conclusions obtain when the linear combination is negative. [10] However, the sum of the linear combination is not a significance test, see testing significance (below) to learn how to determine if the contrast computed from the sample is significant.
The usual results for linear combinations of independent random variables mean that the variance of a contrast is equal to the weighted sum of the variances. [12] If two contrasts are orthogonal, estimates created by using such contrasts will be uncorrelated. If orthogonal contrasts are available, it is possible to summarize the results of a statistical analysis in the form of a simple analysis of variance table, in such a way that it contains the results for different test statistics relating to different contrasts, each of which are statistically independent. Linear contrasts can be easily converted into sums of squares. SScontrast = , with 1 degree of freedom, where n represents the number of observations per group. If the contrasts are orthogonal, the sum of the SScontrasts = SStreatment. Testing the significance of a contrast requires the computation of SScontrast. [8]
SScontrast also happens to be a mean square because all contrasts have 1 degree of freedom. Dividing by produces an F-statistic with one and degrees of freedom, the statistical significance of Fcontrast can be determined by comparing the obtained F statistic with a critical value of F with the same degrees of freedom. [8]
Analysis of variance (ANOVA) is a collection of statistical models and their associated estimation procedures used to analyze the differences among means. ANOVA was developed by the statistician Ronald Fisher. ANOVA is based on the law of total variance, where the observed variance in a particular variable is partitioned into components attributable to different sources of variation. In its simplest form, ANOVA provides a statistical test of whether two or more population means are equal, and therefore generalizes the t-test beyond two means. In other words, the ANOVA is used to test the difference between two or more means.
In statistics, the term linear model refers to any model which assumes linearity in the system. The most common occurrence is in connection with regression models and the term is often taken as synonymous with linear regression model. However, the term is also used in time series analysis with a different meaning. In each case, the designation "linear" is used to identify a subclass of models for which substantial reduction in the complexity of the related statistical theory is possible.
In statistics, completeness is a property of a statistic computed on a sample dataset in relation to a parametric model of the dataset. It is opposed to the concept of an ancillary statistic. While an ancillary statistic contains no information about the model parameters, a complete statistic contains only information about the parameters, and no ancillary information. It is closely related to the concept of a sufficient statistic which contains all of the information that the dataset provides about the parameters.
In statistics, the mean squared error (MSE) or mean squared deviation (MSD) of an estimator measures the average of the squares of the errors—that is, the average squared difference between the estimated values and the actual value. MSE is a risk function, corresponding to the expected value of the squared error loss. The fact that MSE is almost always strictly positive is because of randomness or because the estimator does not account for information that could produce a more accurate estimate. In machine learning, specifically empirical risk minimization, MSE may refer to the empirical risk, as an estimate of the true MSE.
Analysis of covariance (ANCOVA) is a general linear model that blends ANOVA and regression. ANCOVA evaluates whether the means of a dependent variable (DV) are equal across levels of one or more categorical independent variables (IV) and across one or more continuous variables. For example, the categorical variable(s) might describe treatment and the continuous variable(s) might be covariates or nuisance variables; or vice versa. Mathematically, ANCOVA decomposes the variance in the DV into variance explained by the CV(s), variance explained by the categorical IV, and residual variance. Intuitively, ANCOVA can be thought of as 'adjusting' the DV by the group means of the CV(s).
In statistics, an effect size is a value measuring the strength of the relationship between two variables in a population, or a sample-based estimate of that quantity. It can refer to the value of a statistic calculated from a sample of data, the value of a parameter for a hypothetical population, or to the equation that operationalizes how statistics or parameters lead to the effect size value. Examples of effect sizes include the correlation between two variables, the regression coefficient in a regression, the mean difference, or the risk of a particular event happening. Effect sizes are a complement tool for statistical hypothesis testing, and play an important role in power analyses to assess the sample size required for new experiments. Effect size are fundamental in meta-analyses which aim at provide the combined effect size based on data from multiple studies. The cluster of data-analysis methods concerning effect sizes is referred to as estimation statistics.
Student's t-test is a statistical test used to test whether the difference between the response of two groups is statistically significant or not. It is any statistical hypothesis test in which the test statistic follows a Student's t-distribution under the null hypothesis. It is most commonly applied when the test statistic would follow a normal distribution if the value of a scaling term in the test statistic were known. When the scaling term is estimated based on the data, the test statistic—under certain conditions—follows a Student's t distribution. The t-test's most common application is to test whether the means of two populations are significantly different. In many cases, a Z-test will yield very similar results to a t-test because the latter converges to the former as the size of the dataset increases.
In mathematical statistics, the Fisher information is a way of measuring the amount of information that an observable random variable X carries about an unknown parameter θ of a distribution that models X. Formally, it is the variance of the score, or the expected value of the observed information.
In the statistical analysis of time series, autoregressive–moving-average (ARMA) models provide a parsimonious description of a (weakly) stationary stochastic process in terms of two polynomials, one for the autoregression (AR) and the second for the moving average (MA). The general ARMA model was described in the 1951 thesis of Peter Whittle, Hypothesis testing in time series analysis, and it was popularized in the 1970 book by George E. P. Box and Gwilym Jenkins.
Directional statistics is the subdiscipline of statistics that deals with directions, axes or rotations in Rn. More generally, directional statistics deals with observations on compact Riemannian manifolds including the Stiefel manifold.
In statistics, the coefficient of determination, denoted R2 or r2 and pronounced "R squared", is the proportion of the variation in the dependent variable that is predictable from the independent variable(s).
In statistics, ordinary least squares (OLS) is a type of linear least squares method for choosing the unknown parameters in a linear regression model by the principle of least squares: minimizing the sum of the squares of the differences between the observed dependent variable in the input dataset and the output of the (linear) function of the independent variable. Some sources consider OLS to be linear regression.
In statistics, Poisson regression is a generalized linear model form of regression analysis used to model count data and contingency tables. Poisson regression assumes the response variable Y has a Poisson distribution, and assumes the logarithm of its expected value can be modeled by a linear combination of unknown parameters. A Poisson regression model is sometimes known as a log-linear model, especially when used to model contingency tables.
Multilevel models are statistical models of parameters that vary at more than one level. An example could be a model of student performance that contains measures for individual students as well as measures for classrooms within which the students are grouped. These models can be seen as generalizations of linear models, although they can also extend to non-linear models. These models became much more popular after sufficient computing power and software became available.
Omnibus tests are a kind of statistical test. They test whether the explained variance in a set of data is significantly greater than the unexplained variance, overall. One example is the F-test in the analysis of variance. There can be legitimate significant effects within a model even if the omnibus test is not significant. For instance, in a model with two independent variables, if only one variable exerts a significant effect on the dependent variable and the other does not, then the omnibus test may be non-significant. This fact does not affect the conclusions that may be drawn from the one significant variable. In order to test effects within an omnibus test, researchers often use contrasts.
In statistics, the bias of an estimator is the difference between this estimator's expected value and the true value of the parameter being estimated. An estimator or decision rule with zero bias is called unbiased. In statistics, "bias" is an objective property of an estimator. Bias is a distinct concept from consistency: consistent estimators converge in probability to the true value of the parameter, but may be biased or unbiased; see bias versus consistency for more.
In statistics, identifiability is a property which a model must satisfy for precise inference to be possible. A model is identifiable if it is theoretically possible to learn the true values of this model's underlying parameters after obtaining an infinite number of observations from it. Mathematically, this is equivalent to saying that different values of the parameters must generate different probability distributions of the observable variables. Usually the model is identifiable only under certain technical restrictions, in which case the set of these requirements is called the identification conditions.
In statistics, efficiency is a measure of quality of an estimator, of an experimental design, or of a hypothesis testing procedure. Essentially, a more efficient estimator needs fewer input data or observations than a less efficient one to achieve the Cramér–Rao bound. An efficient estimator is characterized by having the smallest possible variance, indicating that there is a small deviance between the estimated value and the "true" value in the L2 norm sense.
The generalized functional linear model (GFLM) is an extension of the generalized linear model (GLM) that allows one to regress univariate responses of various types on functional predictors, which are mostly random trajectories generated by a square-integrable stochastic processes. Similarly to GLM, a link function relates the expected value of the response variable to a linear predictor, which in case of GFLM is obtained by forming the scalar product of the random predictor function with a smooth parameter function . Functional Linear Regression, Functional Poisson Regression and Functional Binomial Regression, with the important Functional Logistic Regression included, are special cases of GFLM. Applications of GFLM include classification and discrimination of stochastic processes and functional data.
In statistics, the class of vector generalized linear models (VGLMs) was proposed to enlarge the scope of models catered for by generalized linear models (GLMs). In particular, VGLMs allow for response variables outside the classical exponential family and for more than one parameter. Each parameter can be transformed by a link function. The VGLM framework is also large enough to naturally accommodate multiple responses; these are several independent responses each coming from a particular statistical distribution with possibly different parameter values.
{{cite book}}
: CS1 maint: location missing publisher (link)