Contrast (statistics)

Last updated

In statistics, particularly in analysis of variance and linear regression, a contrast is a linear combination of variables (parameters or statistics) whose coefficients add up to zero, allowing comparison of different treatments. [1] [2]

Contents

Definitions

Let be a set of variables, either parameters or statistics, and be known constants. The quantity is a linear combination. It is called a contrast if . [3] [4] Furthermore, two contrasts, and , are orthogonal if . [5]

Examples

Let us imagine that we are comparing four means, . The following table describes three possible contrasts:

1-100
001-1
11-1-1

The first contrast allows comparison of the first mean with the second, the second contrast allows comparison of the third mean with the fourth, and the third contrast allows comparison of the average of the first two means with the average of the last two. [4]

In a balanced one-way analysis of variance, using orthogonal contrasts has the advantage of completely partitioning the treatment sum of squares into non-overlapping additive components that represent the variation due to each contrast. [6] Consider the numbers above: each of the rows sums up to zero (hence they are contrasts). If we multiply each element of the first and second row and add those up, this again results in zero, thus the first and second contrast are orthogonal and so on.

Sets of contrast

Background

A contrast is defined as the sum of each group mean multiplied by a coefficient for each group (i.e., a signed number, cj). [10] In equation form, , where L is the weighted sum of group means, the cj coefficients represent the assigned weights of the means (these must sum to 0 for orthogonal contrasts), and j represents the group means. [8] Coefficients can be positive or negative, and fractions or whole numbers, depending on the comparison of interest. Linear contrasts are very useful and can be used to test complex hypotheses when used in conjunction with ANOVA or multiple regression. In essence, each contrast defines and tests for a particular pattern of differences among the means. [10]

Contrasts should be constructed "to answer specific research questions", and do not necessarily have to be orthogonal. [11]

A simple (not necessarily orthogonal) contrast is the difference between two means. A more complex contrast can test differences among several means (ex. with four means, assigning coefficients of –3, –1, +1, and +3), or test the difference between a single mean and the combined mean of several groups (e.g., if you have four means assign coefficients of –3, +1, +1, and +1) or test the difference between the combined mean of several groups and the combined mean of several other groups (i.e., with four means, assign coefficients of –1, –1, +1, and +1). [8] The coefficients for the means to be combined (or averaged) must be the same in magnitude and direction, that is, equally weighted. When means are assigned different coefficients (either in magnitude or direction, or both), the contrast is testing for a difference between those means. A contrast may be any of: the set of coefficients used to specify a comparison; the specific value of the linear combination obtained for a given study or experiment; the random quantity defined by applying the linear combination to treatment effects when these are themselves considered as random variables. In the last context, the term contrast variable is sometimes used.

Contrasts are sometimes used to compare mixed effects. A common example is the difference between two test scores one at the beginning of the semester and one at its end. Note that we are not interested in one of these scores by itself, but only in the contrast (in this case the difference). Since this is a linear combination of independent variables, its variance equals the weighted sum of the summands' variances; in this case both weights are one. This "blending" of two variables into one might be useful in many cases such as ANOVA, regression, or even as descriptive statistics in its own right.

An example of a complex contrast would be comparing 5 standard treatments to a new treatment, hence giving each old treatment mean a weight of 1/5, and the new sixth treatment mean a weight of 1 (using the equation above). If this new linear combination has a mean zero, this will mean that there is no evidence that the old treatments are different from the new treatment on average. If the sum of the new linear combination is positive, there is some evidence (the strength of the evidence is often associated with the p-value computed on that linear combination) that the combined mean of the 5 standard treatments is higher than the new treatment mean. Analogous conclusions obtain when the linear combination is negative. [10] However, the sum of the linear combination is not a significance test, see testing significance (below) to learn how to determine if the contrast computed from the sample is significant.

The usual results for linear combinations of independent random variables mean that the variance of a contrast is equal to the weighted sum of the variances. [12] If two contrasts are orthogonal, estimates created by using such contrasts will be uncorrelated. If orthogonal contrasts are available, it is possible to summarize the results of a statistical analysis in the form of a simple analysis of variance table, in such a way that it contains the results for different test statistics relating to different contrasts, each of which are statistically independent. Linear contrasts can be easily converted into sums of squares. SScontrast = , with 1 degree of freedom, where n represents the number of observations per group. If the contrasts are orthogonal, the sum of the SScontrasts = SStreatment. Testing the significance of a contrast requires the computation of SScontrast. [8] A recent development in statistical analysis is the standardized mean of a contrast variable. This makes a comparison between the size of the differences between groups, as measured by a contrast and the accuracy with which that contrast can be measured by a given study or experiment. [13]

Testing significance

SScontrast also happens to be a mean square because all contrasts have 1 degree of freedom. Dividing by produces an F-statistic with one and degrees of freedom, the statistical significance of Fcontrast can be determined by comparing the obtained F statistic with a critical value of F with the same degrees of freedom. [8]

Related Research Articles

Analysis of variance (ANOVA) is a collection of statistical models and their associated estimation procedures used to analyze the differences among group means in a sample. ANOVA was developed by the statistician Ronald Fisher. The ANOVA is based on the law of total variance, where the observed variance in a particular variable is partitioned into components attributable to different sources of variation. In its simplest form, ANOVA provides a statistical test of whether two or more population means are equal, and therefore generalizes the t-test beyond two means.

In statistics, an estimator is a rule for calculating an estimate of a given quantity based on observed data: thus the rule, the quantity of interest and its result are distinguished.

In statistics, the term linear model is used in different ways according to the context. The most common occurrence is in connection with regression models and the term is often taken as synonymous with linear regression model. However, the term is also used in time series analysis with a different meaning. In each case, the designation "linear" is used to identify a subclass of models for which substantial reduction in the complexity of the related statistical theory is possible.

In statistics, the mean squared error (MSE) or mean squared deviation (MSD) of an estimator measures the average of the squares of the errors—that is, the average squared difference between the estimated values and the actual value. MSE is a risk function, corresponding to the expected value of the squared error loss. The fact that MSE is almost always strictly positive is because of randomness or because the estimator does not account for information that could produce a more accurate estimate.

Pearson correlation coefficient

In statistics, the Pearson correlation coefficient, also referred to as Pearson's r, the Pearson product-moment correlation coefficient (PPMCC), or the bivariate correlation, is a statistic that measures linear correlation between two variables X and Y. It has a value between +1 and −1. A value of +1 is total positive linear correlation, 0 is no linear correlation, and −1 is total negative linear correlation.

An F-test is any statistical test in which the test statistic has an F-distribution under the null hypothesis. It is most often used when comparing statistical models that have been fitted to a data set, in order to identify the model that best fits the population from which the data were sampled. Exact "F-tests" mainly arise when the models have been fitted to the data using least squares. The name was coined by George W. Snedecor, in honour of Sir Ronald A. Fisher. Fisher initially developed the statistic as the variance ratio in the 1920s.

Analysis of covariance (ANCOVA) is a general linear model which blends ANOVA and regression. ANCOVA evaluates whether the means of a dependent variable (DV) are equal across levels of a categorical independent variable (IV) often called a treatment, while statistically controlling for the effects of other continuous variables that are not of primary interest, known as covariates (CV) or nuisance variables. Mathematically, ANCOVA decomposes the variance in the DV into variance explained by the CV(s), variance explained by the categorical IV, and residual variance. Intuitively, ANCOVA can be thought of as 'adjusting' the DV by the group means of the CV(s).

In statistics, an effect size is a number measuring the strength of the relationship between two variables in a statistical population, or a sample-based estimate of that quantity. It can refer to the value of a statistic calculated from a sample of data, the value of a parameter of a hypothetical statistical population, or to the equation that operationalizes how statistics or parameters lead to the effect size value. Examples of effect sizes include the correlation between two variables, the regression coefficient in a regression, the mean difference, or the risk of a particular event happening. Effect sizes complement statistical hypothesis testing, and play an important role in power analyses, sample size planning, and in meta-analyses. The cluster of data-analysis methods concerning effect sizes is referred to as estimation statistics.

In mathematical statistics, the Fisher information is a way of measuring the amount of information that an observable random variable X carries about an unknown parameter θ of a distribution that models X. Formally, it is the variance of the score, or the expected value of the observed information. In Bayesian statistics, the asymptotic distribution of the posterior mode depends on the Fisher information and not on the prior. The role of the Fisher information in the asymptotic theory of maximum-likelihood estimation was emphasized by the statistician Ronald Fisher. The Fisher information is also used in the calculation of the Jeffreys prior, which is used in Bayesian statistics.

Generalized linear model

In statistics, the generalized linear model (GLM) is a flexible generalization of ordinary linear regression that allows for response variables that have error distribution models other than a normal distribution. The GLM generalizes linear regression by allowing the linear model to be related to the response variable via a link function and by allowing the magnitude of the variance of each measurement to be a function of its predicted value.

In the statistical analysis of time series, autoregressive–moving-average (ARMA) models provide a parsimonious description of a (weakly) stationary stochastic process in terms of two polynomials, one for the autoregression (AR) and the second for the moving average (MA). The general ARMA model was described in the 1951 thesis of Peter Whittle, Hypothesis testing in time series analysis, and it was popularized in the 1970 book by George E. P. Box and Gwilym Jenkins.

Coefficient of determination

In statistics, the coefficient of determination, denoted R2 or r2 and pronounced "R squared", is the proportion of the variance in the dependent variable that is predictable from the independent variable(s).

Ordinary least squares

In statistics, ordinary least squares (OLS) is a type of linear least squares method for estimating the unknown parameters in a linear regression model. OLS chooses the parameters of a linear function of a set of explanatory variables by the principle of least squares: minimizing the sum of the squares of the differences between the observed dependent variable in the given dataset and those predicted by the linear function.

Omnibus tests are a kind of statistical test. They test whether the explained variance in a set of data is significantly greater than the unexplained variance, overall. One example is the F-test in the analysis of variance. There can be legitimate significant effects within a model even if the omnibus test is not significant. For instance, in a model with two independent variables, if only one variable exerts a significant effect on the dependent variable and the other does not, then the omnibus test may be non-significant. This fact does not affect the conclusions that may be drawn from the one significant variable. In order to test effects within an omnibus test, researchers often use contrasts.

In statistics, the bias of an estimator is the difference between this estimator's expected value and the true value of the parameter being estimated. An estimator or decision rule with zero bias is called unbiased. In statistics, "bias" is an objective property of an estimator. Bias can also be measured with respect to the median, rather than the mean, in which case one distinguishes median-unbiased from the usual mean-unbiasedness property. Bias is a distinct concept from consistency. Consistent estimators converge in probability to the true value of the parameter, but may be biased or unbiased; see bias versus consistency for more.

In statistics, identifiability is a property which a model must satisfy in order for precise inference to be possible. A model is identifiable if it is theoretically possible to learn the true values of this model's underlying parameters after obtaining an infinite number of observations from it. Mathematically, this is equivalent to saying that different values of the parameters must generate different probability distributions of the observable variables. Usually the model is identifiable only under certain technical restrictions, in which case the set of these requirements is called the identification conditions.

In the comparison of various statistical procedures, efficiency is a measure of quality of an estimator, of an experimental design, or of a hypothesis testing procedure. Essentially, a more efficient estimator, experiment, or test needs fewer observations than a less efficient one to achieve a given performance. This article primarily deals with efficiency of estimators.

In statistics, the two-way analysis of variance (ANOVA) is an extension of the one-way ANOVA that examines the influence of two different categorical independent variables on one continuous dependent variable. The two-way ANOVA not only aims at assessing the main effect of each independent variable but also if there is any interaction between them.

The generalized functional linear model (GFLM) is an extension of the generalized linear model (GLM) that allows one to regress univariate responses of various types on functional predictors, which are mostly random trajectories generated by a square-integrable stochastic processes. Similarly to GLM, a link function relates the expected value of the response variable to a linear predictor, which in case of GFLM is obtained by forming the scalar product of the random predictor function with a smooth parameter function . Functional Linear Regression, Functional Poisson Regression and Functional Binomial Regression, with the important Functional Logistic Regression included, are special cases of GFLM. Applications of GFLM include classification and discrimination of stochastic processes and functional data.

Vector generalized linear model

In statistics, the class of vector generalized linear models (VGLMs) was proposed to enlarge the scope of models catered for by generalized linear models (GLMs). In particular, VGLMs allow for response variables outside the classical exponential family and for more than one parameter. Each parameter can be transformed by a link function. The VGLM framework is also large enough to naturally accommodate multiple responses; these are several independent responses each coming from a particular statistical distribution with possibly different parameter values.

References

Notes

  1. Casella, George; Berger, Roger L (2001). Statistical inference. Cengage Learning. ISBN   9780534243128.
  2. George Casella (2008). Statistical design. Springer. ISBN   978-0-387-75965-4.
  3. Casella a Berger 2001, p. 526.
  4. 1 2 Casella 2008, p. 11.
  5. Casella 2008, p. 12.
  6. Casella 2008, p. 13.
  7. 1 2 Everitt, B.S. (2002) The Cambridge Dictionary of Statistics, CUP. ISBN   0-521-81099-X (entry for "Orthogonal contrasts")
  8. 1 2 3 4 5 Howell, David C. (2010). Statistical methods for psychology (7th ed.). Belmont, CA: Thomson Wadsworth. ISBN   978-0-495-59784-1.
  9. Kim, Jong Sung. "Orthogonal Polynomial Contrasts" (PDF). Retrieved 27 April 2012.
  10. 1 2 3 Clark, James M. (2007). Intermediate Data Analysis: Multiple Regression and Analysis of Variance. University of Winnipeg.
  11. Kuehl, Robert O. (2000). Design of experiments: statistical principles of research design and analysis (2nd ed.). Pacific Grove, CA: Duxbury/Thomson Learning. ISBN   0534368344.
  12. NIST/SEMATECH e-Handbook of Statistical Methods
  13. Zhang XHD (2011). Optimal High-Throughput Screening: Practical Experimental Design and Data Analysis for Genome-scale RNAi Research. Cambridge University Press. ISBN   978-0-521-73444-8.