Standard score

Last updated

Comparison of the various grading methods in a normal distribution, including: standard deviations, cumulative percentages, percentile equivalents, z-scores, T-scores The Normal Distribution.svg
Comparison of the various grading methods in a normal distribution, including: standard deviations, cumulative percentages, percentile equivalents, z-scores, T-scores

In statistics, the standard score is the number of standard deviations by which the value of a raw score (i.e., an observed value or data point) is above or below the mean value of what is being observed or measured. Raw scores above the mean have positive standard scores, while those below the mean have negative standard scores.

Contents

It is calculated by subtracting the population mean from an individual raw score and then dividing the difference by the population standard deviation. This process of converting a raw score into a standard score is called standardizing or normalizing (however, "normalizing" can refer to many types of ratios; see Normalization for more).

Standard scores are most commonly called z-scores; the two terms may be used interchangeably, as they are in this article. Other equivalent terms in use include z-value, z-statistic, normal score, standardized variable and pull in high energy physics. [1] [2]

Computing a z-score requires knowledge of the mean and standard deviation of the complete population to which a data point belongs; if one only has a sample of observations from the population, then the analogous computation using the sample mean and sample standard deviation yields the t-statistic.

Calculation

If the population mean and population standard deviation are known, a raw score x is converted into a standard score by [3]

where:

μ is the mean of the population,
σ is the standard deviation of the population.

The absolute value of z represents the distance between that raw score x and the population mean in units of the standard deviation. z is negative when the raw score is below the mean, positive when above.

Calculating z using this formula requires use of the population mean and the population standard deviation, not the sample mean or sample deviation. However, knowing the true mean and standard deviation of a population is often an unrealistic expectation, except in cases such as standardized testing, where the entire population is measured.

When the population mean and the population standard deviation are unknown, the standard score may be estimated by using the sample mean and sample standard deviation as estimates of the population values. [4] [5] [6] [7]

In these cases, the z-score is given by

where:

is the mean of the sample,
S is the standard deviation of the sample.

Though it should always be stated, the distinction between use of the population and sample statistics often is not made. In either case, the numerator and denominator of the equations have the same units of measure so that the units cancel out through division and z is left as a dimensionless quantity.

Applications

Z-test

The z-score is often used in the z-test in standardized testing – the analog of the Student's t-test for a population whose parameters are known, rather than estimated. As it is very unusual to know the entire population, the t-test is much more widely used.

Prediction intervals

The standard score can be used in the calculation of prediction intervals. A prediction interval [L,U], consisting of a lower endpoint designated L and an upper endpoint designated U, is an interval such that a future observation X will lie in the interval with high probability , i.e.

For the standard score Z of X it gives: [8]

By determining the quantile z such that

it follows:

Process control

In process control applications, the Z value provides an assessment of the degree to which a process is operating off-target.

Comparison of scores measured on different scales: ACT and SAT

The z score for Student A was 1, meaning Student A was 1 standard deviation above the mean. Thus, Student A performed in the 84.13 percentile on the SAT. Z score for Students A.png
The z score for Student A was 1, meaning Student A was 1 standard deviation above the mean. Thus, Student A performed in the 84.13 percentile on the SAT.

When scores are measured on different scales, they may be converted to z-scores to aid comparison. Dietz et al. [9] give the following example, comparing student scores on the (old) SAT and ACT high school tests. The table shows the mean and standard deviation for total scores on the SAT and ACT. Suppose that student A scored 1800 on the SAT, and student B scored 24 on the ACT. Which student performed better relative to other test-takers?

SATACT
Mean150021
Standard deviation3005
The z score for Student B was 0.6, meaning Student B was 0.6 standard deviation above the mean. Thus, Student B performed in the 72.57 percentile on the SAT. Z score for Student B.png
The z score for Student B was 0.6, meaning Student B was 0.6 standard deviation above the mean. Thus, Student B performed in the 72.57 percentile on the SAT.

The z-score for student A is

The z-score for student B is

Because student A has a higher z-score than student B, student A performed better compared to other test-takers than did student B.

Percentage of observations below a z-score

Continuing the example of ACT and SAT scores, if it can be further assumed that both ACT and SAT scores are normally distributed (which is approximately correct), then the z-scores may be used to calculate the percentage of test-takers who received lower scores than students A and B.

Cluster analysis and multidimensional scaling

"For some multivariate techniques such as multidimensional scaling and cluster analysis, the concept of distance between the units in the data is often of considerable interest and importance… When the variables in a multivariate data set are on different scales, it makes more sense to calculate the distances after some form of standardization." [10]

Principal components analysis

In principal components analysis, "Variables measured on different scales or on a common scale with widely differing ranges are often standardized." [11]

Relative importance of variables in multiple regression: standardized regression coefficients

Standardization of variables prior to multiple regression analysis is sometimes used as an aid to interpretation. [12] (page 95) state the following.

"The standardized regression slope is the slope in the regression equation if X and Y are standardized … Standardization of X and Y is done by subtracting the respective means from each set of observations and dividing by the respective standard deviations … In multiple regression, where several X variables are used, the standardized regression coefficients quantify the relative contribution of each X variable."

However, Kutner et al. [13] (p 278) give the following caveat: "… one must be cautious about interpreting any regression coefficients, whether standardized or not. The reason is that when the predictor variables are correlated among themselves, … the regression coefficients are affected by the other predictor variables in the model … The magnitudes of the standardized regression coefficients are affected not only by the presence of correlations among the predictor variables but also by the spacings of the observations on each of these variables. Sometimes these spacings may be quite arbitrary. Hence, it is ordinarily not wise to interpret the magnitudes of standardized regression coefficients as reflecting the comparative importance of the predictor variables."

Standardizing in mathematical statistics

In mathematical statistics, a random variable X is standardized by subtracting its expected value and dividing the difference by its standard deviation

If the random variable under consideration is the sample mean of a random sample of X:

then the standardized version is

Where the standardised sample mean's variance was calculated as follows:

T-score

In educational assessment, T-score is a standard score Z shifted and scaled to have a mean of 50 and a standard deviation of 10. [14] [15] [16] It is also known as hensachi in Japanese, where the concept is much more widely known and used in the context of high school and university admissions.

In bone density measurements, the T-score is the standard score of the measurement compared to the population of healthy 30-year-old adults, and has the usual mean of 0 and standard deviation of 1. [17]

See also

Related Research Articles

In probability theory and statistics, kurtosis is a measure of the "tailedness" of the probability distribution of a real-valued random variable. Like skewness, kurtosis describes a particular aspect of a probability distribution. There are different ways to quantify kurtosis for a theoretical distribution, and there are corresponding ways of estimating it using a sample from a population. Different measures of kurtosis may have different interpretations.

<span class="mw-page-title-main">Normal distribution</span> Probability distribution

In statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable. The general form of its probability density function is

<span class="mw-page-title-main">Standard deviation</span> In statistics, a measure of variation

In statistics, the standard deviation is a measure of the amount of variation of a random variable expected about its mean. A low standard deviation indicates that the values tend to be close to the mean of the set, while a high standard deviation indicates that the values are spread out over a wider range.

<span class="mw-page-title-main">Skewness</span> Measure of the asymmetry of random variables

In probability theory and statistics, skewness is a measure of the asymmetry of the probability distribution of a real-valued random variable about its mean. The skewness value can be positive, zero, negative, or undefined.

<span class="mw-page-title-main">Variance</span> Statistical measure of how far values spread from their average

In probability theory and statistics, variance is the expected value of the squared deviation from the mean of a random variable. The standard deviation (SD) is obtained as the square root of the variance. Variance is a measure of dispersion, meaning it is a measure of how far a set of numbers is spread out from their average value. It is the second central moment of a distribution, and the covariance of the random variable with itself, and it is often represented by , , , , or .

<span class="mw-page-title-main">Multivariate normal distribution</span> Generalization of the one-dimensional normal distribution to higher dimensions

In probability theory and statistics, the multivariate normal distribution, multivariate Gaussian distribution, or joint normal distribution is a generalization of the one-dimensional (univariate) normal distribution to higher dimensions. One definition is that a random vector is said to be k-variate normally distributed if every linear combination of its k components has a univariate normal distribution. Its importance derives mainly from the multivariate central limit theorem. The multivariate normal distribution is often used to describe, at least approximately, any set of (possibly) correlated real-valued random variables each of which clusters around a mean value.

<span class="mw-page-title-main">Log-normal distribution</span> Probability distribution

In probability theory, a log-normal (or lognormal) distribution is a continuous probability distribution of a random variable whose logarithm is normally distributed. Thus, if the random variable X is log-normally distributed, then Y = ln(X) has a normal distribution. Equivalently, if Y has a normal distribution, then the exponential function of Y, X = exp(Y), has a log-normal distribution. A random variable which is log-normally distributed takes only positive real values. It is a convenient and useful model for measurements in exact and engineering sciences, as well as medicine, economics and other topics (e.g., energies, concentrations, lengths, prices of financial instruments, and other metrics).

<span class="mw-page-title-main">Student's t-distribution</span> Probability distribution

In probability and statistics, Student's t distribution is a continuous probability distribution that generalizes the standard normal distribution. Like the latter, it is symmetric around zero and bell-shaped.

In probability theory, Chebyshev's inequality provides an upper bound on the probability of deviation of a random variable from its mean. More specifically, the probability that a random variable deviates from its mean by more than is at most , where is any positive constant.

<span class="mw-page-title-main">Covariance matrix</span> Measure of covariance of components of a random vector

In probability theory and statistics, a covariance matrix is a square matrix giving the covariance between each pair of elements of a given random vector.

In statistics, the mean squared error (MSE) or mean squared deviation (MSD) of an estimator measures the average of the squares of the errors—that is, the average squared difference between the estimated values and the actual value. MSE is a risk function, corresponding to the expected value of the squared error loss. The fact that MSE is almost always strictly positive is because of randomness or because the estimator does not account for information that could produce a more accurate estimate. In machine learning, specifically empirical risk minimization, MSE may refer to the empirical risk, as an estimate of the true MSE.

<span class="mw-page-title-main">Pearson correlation coefficient</span> Measure of linear correlation

In statistics, the Pearson correlation coefficient (PCC) is a correlation coefficient that measures linear correlation between two sets of data. It is the ratio between the covariance of two variables and the product of their standard deviations; thus, it is essentially a normalized measurement of the covariance, such that the result always has a value between −1 and 1. As with covariance itself, the measure can only reflect a linear correlation of variables, and ignores many other types of relationships or correlations. As a simple example, one would expect the age and height of a sample of teenagers from a high school to have a Pearson correlation coefficient significantly greater than 0, but less than 1.

In statistics, an effect size is a value measuring the strength of the relationship between two variables in a population, or a sample-based estimate of that quantity. It can refer to the value of a statistic calculated from a sample of data, the value of a parameter for a hypothetical population, or to the equation that operationalizes how statistics or parameters lead to the effect size value. Examples of effect sizes include the correlation between two variables, the regression coefficient in a regression, the mean difference, or the risk of a particular event happening. Effect sizes complement statistical hypothesis testing, and play an important role in power analyses, sample size planning, and in meta-analyses. The cluster of data-analysis methods concerning effect sizes is referred to as estimation statistics.

In statistics and optimization, errors and residuals are two closely related and easily confused measures of the deviation of an observed value of an element of a statistical sample from its "true value". The error of an observation is the deviation of the observed value from the true value of a quantity of interest. The residual is the difference between the observed value and the estimated value of the quantity of interest. The distinction is most important in regression analysis, where the concepts are sometimes called the regression errors and regression residuals and where they lead to the concept of studentized residuals. In econometrics, "errors" are also called disturbances.

In statistical inference, specifically predictive inference, a prediction interval is an estimate of an interval in which a future observation will fall, with a certain probability, given what has already been observed. Prediction intervals are often used in regression analysis.

Student's t-test is a statistical test used to test whether the difference between the response of two groups is statistically significant or not. It is any statistical hypothesis test in which the test statistic follows a Student's t-distribution under the null hypothesis. It is most commonly applied when the test statistic would follow a normal distribution if the value of a scaling term in the test statistic were known. When the scaling term is estimated based on the data, the test statistic—under certain conditions—follows a Student's t distribution. The t-test's most common application is to test whether the means of two populations are significantly different. In many cases, a Z-test will yield very similar results to a t-test since the latter converges to the former as the size of the dataset increases.

In statistics, a studentized residual is the dimensionless ratio resulting from the division of a residual by an estimate of its standard deviation, both expressed in the same units. It is a form of a Student's t-statistic, with the estimate of error varying between points.

<span class="mw-page-title-main">Directional statistics</span>

Directional statistics is the subdiscipline of statistics that deals with directions, axes or rotations in Rn. More generally, directional statistics deals with observations on compact Riemannian manifolds including the Stiefel manifold.

<span class="mw-page-title-main">68–95–99.7 rule</span> Shorthand used in statistics

In statistics, the 68–95–99.7 rule, also known as the empirical rule, is a shorthand used to remember the percentage of values that lie within an interval estimate in a normal distribution: 68%, 95%, and 99.7% of the values lie within one, two, and three standard deviations of the mean, respectively.

Paired difference test is a type of location test that is used when comparing two sets of paired measurements to assess whether their population means differ. A paired difference test uses additional information about the sample that is not present in an ordinary unpaired testing situation, either to increase the statistical power, or to reduce the effects of confounders.

References

  1. Mulders, Martijn; Zanderighi, Giulia, eds. (2017). 2015 European School of High-Energy Physics: Bansko, Bulgaria 02 - 15 Sep 2015. CERN Yellow Reports: School Proceedings. Geneva: CERN. ISBN   978-92-9083-472-4.
  2. Gross, Eilam (2017-11-06). "Practical Statistics for High Energy Physics". CERN Yellow Reports: School Proceedings. 4/2017: 165–186. doi:10.23730/CYRSP-2017-004.165.
  3. E. Kreyszig (1979). Advanced Engineering Mathematics (Fourth ed.). Wiley. p. 880, eq. 5. ISBN   0-471-02140-7.
  4. Spiegel, Murray R.; Stephens, Larry J (2008), Schaum's Outlines Statistics (Fourth ed.), McGraw Hill, ISBN   978-0-07-148584-5
  5. Mendenhall, William; Sincich, Terry (2007), Statistics for Engineering and the Sciences (Fifth ed.), Pearson / Prentice Hall, ISBN   978-0131877061
  6. Glantz, Stanton A.; Slinker, Bryan K.; Neilands, Torsten B. (2016), Primer of Applied Regression & Analysis of Variance (Third ed.), McGraw Hill, ISBN   978-0071824118
  7. Aho, Ken A. (2014), Foundational and Applied Statistics for Biologists (First ed.), Chapman & Hall / CRC Press, ISBN   978-1439873380
  8. E. Kreyszig (1979). Advanced Engineering Mathematics (Fourth ed.). Wiley. p. 880, eq. 6. ISBN   0-471-02140-7.
  9. Diez, David; Barr, Christopher; Çetinkaya-Rundel, Mine (2012), OpenIntro Statistics (Second ed.), openintro.org
  10. Everitt, Brian; Hothorn, Torsten J (2011), An Introduction to Applied Multivariate Analysis with R, Springer, ISBN   978-1441996497
  11. Johnson, Richard; Wichern, Wichern (2007), Applied Multivariate Statistical Analysis, Pearson / Prentice Hall
  12. Afifi, Abdelmonem; May, Susanne K.; Clark, Virginia A. (2012), Practical Multivariate Analysis (Fifth ed.), Chapman & Hall/CRC, ISBN   978-1439816806
  13. Kutner, Michael; Nachtsheim, Christopher; Neter, John (204), Applied Linear Regression Models (Fourth ed.), McGraw Hill, ISBN   978-0073014661
  14. John Salvia; James Ysseldyke; Sara Witmer (29 January 2009). Assessment: In Special and Inclusive Education. Cengage Learning. pp. 43–. ISBN   978-0-547-13437-6.
  15. Edward S. Neukrug; R. Charles Fawcett (1 January 2014). Essentials of Testing and Assessment: A Practical Guide for Counselors, Social Workers, and Psychologists. Cengage Learning. pp. 133–. ISBN   978-1-305-16183-2.
  16. Randy W. Kamphaus (16 August 2005). Clinical Assessment of Child and Adolescent Intelligence. Springer. pp. 123–. ISBN   978-0-387-26299-4.
  17. "Bone Mass Measurement: What the Numbers Mean". NIH Osteoporosis and Related Bone Diseases National Resource Center. National Institute of Health. Retrieved 5 August 2017.

Further reading