Conditional probability

Last updated

In probability theory, conditional probability is a measure of the probability of an event occurring, given that another event (by assumption, presumption, assertion or evidence) is already known to have occurred. [1] This particular method relies on event A occurring with some sort of relationship with another event B. In this situation, the event A can be analyzed by a conditional probability with respect to B. If the event of interest is A and the event B is known or assumed to have occurred, "the conditional probability of A given B", or "the probability of A under the condition B", is usually written as P(A|B) [2] or occasionally PB(A). This can also be understood as the fraction of probability B that intersects with A, or the ratio of the probabilities of both events happening to the "given" one happening (how many times A occurs rather than not assuming B has occurred): . [3]

Contents

For example, the probability that any given person has a cough on any given day may be only 5%. But if we know or assume that the person is sick, then they are much more likely to be coughing. For example, the conditional probability that someone unwell (sick) is coughing might be 75%, in which case we would have that P(Cough) = 5% and P(Cough|Sick) = 75 %. Although there is a relationship between A and B in this example, such a relationship or dependence between A and B is not necessary, nor do they have to occur simultaneously.

P(A|B) may or may not be equal to P(A), i.e., the unconditional probability or absolute probability of A. If P(A|B) = P(A), then events A and B are said to be independent: in such a case, knowledge about either event does not alter the likelihood of each other. P(A|B) (the conditional probability of A given B) typically differs from P(B|A). For example, if a person has dengue fever, the person might have a 90% chance of being tested as positive for the disease. In this case, what is being measured is that if event B (having dengue) has occurred, the probability of A (tested as positive) given that B occurred is 90%, simply writing P(A|B) = 90%. Alternatively, if a person is tested as positive for dengue fever, they may have only a 15% chance of actually having this rare disease due to high false positive rates. In this case, the probability of the event B (having dengue) given that the event A (testing positive) has occurred is 15% or P(B|A) = 15%. It should be apparent now that falsely equating the two probabilities can lead to various errors of reasoning, which is commonly seen through base rate fallacies.

While conditional probabilities can provide extremely useful information, limited information is often supplied or at hand. Therefore, it can be useful to reverse or convert a conditional probability using Bayes' theorem: . [4] Another option is to display conditional probabilities in a conditional probability table to illuminate the relationship between events.

Definition

Illustration of conditional probabilities with an Euler diagram. The unconditional probability P(A) = 0.30 + 0.10 + 0.12 = 0.52. However, the conditional probability P(A|B1) = 1, P(A|B2) = 0.12 / (0.12 + 0.04) = 0.75, and P(A|B3) = 0. Conditional probability.svg
Illustration of conditional probabilities with an Euler diagram. The unconditional probability P(A) = 0.30 + 0.10 + 0.12 = 0.52. However, the conditional probability P(A|B1) = 1, P(A|B2) = 0.12 ÷ (0.12 + 0.04) = 0.75, and P(A|B3) = 0.
On a tree diagram, branch probabilities are conditional on the event associated with the parent node. (Here, the overbars indicate that the event does not occur.) Probability tree diagram.svg
On a tree diagram, branch probabilities are conditional on the event associated with the parent node. (Here, the overbars indicate that the event does not occur.)
Venn Pie Chart describing conditional probabilities Venn Pie Chart describing Bayes' law.png
Venn Pie Chart describing conditional probabilities

Conditioning on an event

Kolmogorov definition

Given two events A and B from the sigma-field of a probability space, with the unconditional probability of B being greater than zero (i.e., P(B) > 0), the conditional probability of A given B () is the probability of A occurring if B has or is assumed to have happened. [5] A is assumed to be the set of all possible outcomes of an experiment or random trial that has a restricted or reduced sample space. The conditional probability can be found by the quotient of the probability of the joint intersection of events A and B, that is, , the probability at which A and B occur together, and the probability of B: [2] [6] [7]

.

For a sample space consisting of equal likelihood outcomes, the probability of the event A is understood as the fraction of the number of outcomes in A to the number of all outcomes in the sample space. Then, this equation is understood as the fraction of the set to the set B. Note that the above equation is a definition, not just a theoretical result. We denote the quantity as and call it the "conditional probability of A given B."

As an axiom of probability

Some authors, such as de Finetti, prefer to introduce conditional probability as an axiom of probability:

.

This equation for a conditional probability, although mathematically equivalent, may be intuitively easier to understand. It can be interpreted as "the probability of B occurring multiplied by the probability of A occurring, provided that B has occurred, is equal to the probability of the A and B occurrences together, although not necessarily occurring at the same time". Additionally, this may be preferred philosophically; under major probability interpretations, such as the subjective theory, conditional probability is considered a primitive entity. Moreover, this "multiplication rule" can be practically useful in computing the probability of and introduces a symmetry with the summation axiom for Poincaré Formula:

Thus the equations can be combined to find a new representation of the :

As the probability of a conditional event

Conditional probability can be defined as the probability of a conditional event . The Goodman–Nguyen–Van Fraassen conditional event can be defined as:

, where and represent states or elements of A or B. [8]

It can be shown that

which meets the Kolmogorov definition of conditional probability. [9]

Conditioning on an event of probability zero

If , then according to the definition, is undefined.

The case of greatest interest is that of a random variable Y, conditioned on a continuous random variable X resulting in a particular outcome x. The event has probability zero and, as such, cannot be conditioned on.

Instead of conditioning on X being exactlyx, we could condition on it being closer than distance away from x. The event will generally have nonzero probability and hence, can be conditioned on. We can then take the limit

For example, if two continuous random variables X and Y have a joint density , then by L'Hôpital's rule and Leibniz integral rule, upon differentiation with respect to :

The resulting limit is the conditional probability distribution of Y given X and exists when the denominator, the probability density , is strictly positive.

It is tempting to define the undefined probability using this limit, but this cannot be done in a consistent manner. In particular, it is possible to find random variables X and W and values x, w such that the events and are identical but the resulting limits are not: [10]

The Borel–Kolmogorov paradox demonstrates this with a geometrical argument.

Conditioning on a discrete random variable

Let X be a discrete random variable and its possible outcomes denoted V. For example, if X represents the value of a rolled dice then V is the set . Let us assume for the sake of presentation that X is a discrete random variable, so that each value in V has a nonzero probability.

For a value x in V and an event A, the conditional probability is given by . Writing

for short, we see that it is a function of two variables, x and A.

For a fixed A, we can form the random variable . It represents an outcome of whenever a value x of X is observed.

The conditional probability of A given X can thus be treated as a random variable Y with outcomes in the interval . From the law of total probability, its expected value is equal to the unconditional probability of A.

Partial conditional probability

The partial conditional probability is about the probability of event given that each of the condition events has occurred to a degree (degree of belief, degree of experience) that might be different from 100%. Frequentistically, partial conditional probability makes sense, if the conditions are tested in experiment repetitions of appropriate length . [11] Such -bounded partial conditional probability can be defined as the conditionally expected average occurrence of event in testbeds of length that adhere to all of the probability specifications , i.e.:

[11]

Based on that, partial conditional probability can be defined as

where [11]

Jeffrey conditionalization [12] [13] is a special case of partial conditional probability, in which the condition events must form a partition:

Example

Suppose that somebody secretly rolls two fair six-sided dice, and we wish to compute the probability that the face-up value of the first one is 2, given the information that their sum is no greater than 5.

Probability thatD1 = 2

Table 1 shows the sample space of 36 combinations of rolled values of the two dice, each of which occurs with probability 1/36, with the numbers displayed in the red and dark gray cells being D1 + D2.

D1 = 2 in exactly 6 of the 36 outcomes; thus P(D1 = 2) = 636 = 16:

Table 1
+D2
123456
D11234567
2345678
3456789
45678910
567891011
6789101112

Probability thatD1 + D2  5

Table 2 shows that D1 + D2  5 for exactly 10 of the 36 outcomes, thus P(D1 + D2  5) = 1036:

Table 2
+D2
123456
D11234567
2345678
3456789
45678910
567891011
6789101112

Probability thatD1 = 2 given thatD1 + D2  5

Table 3 shows that for 3 of these 10 outcomes, D1 = 2.

Thus, the conditional probability P(D1 = 2 | D1+D2  5) = 310 = 0.3:

Table 3
+D2
123456
D11234567
2345678
3456789
45678910
567891011
6789101112

Here, in the earlier notation for the definition of conditional probability, the conditioning event B is that D1 + D2  5, and the event A is D1 = 2. We have as seen in the table.

Use in inference

In statistical inference, the conditional probability is an update of the probability of an event based on new information. [14] The new information can be incorporated as follows: [1]

This approach results in a probability measure that is consistent with the original probability measure and satisfies all the Kolmogorov axioms. This conditional probability measure also could have resulted by assuming that the relative magnitude of the probability of A with respect to X will be preserved with respect to B (cf. a Formal Derivation below).

The wording "evidence" or "information" is generally used in the Bayesian interpretation of probability. The conditioning event is interpreted as evidence for the conditioned event. That is, P(A) is the probability of A before accounting for evidence E, and P(A|E) is the probability of A after having accounted for evidence E or after having updated P(A). This is consistent with the frequentist interpretation, which is the first definition given above.

Example

When Morse code is transmitted, there is a certain probability that the "dot" or "dash" that was received is erroneous. This is often taken as interference in the transmission of a message. Therefore, it is important to consider when sending a "dot", for example, the probability that a "dot" was received. This is represented by: In Morse code, the ratio of dots to dashes is 3:4 at the point of sending, so the probability of a "dot" and "dash" are . If it is assumed that the probability that a dot is transmitted as a dash is 1/10, and that the probability that a dash is transmitted as a dot is likewise 1/10, then Bayes's rule can be used to calculate .

Now, can be calculated:

[15]

Statistical independence

Events A and B are defined to be statistically independent if the probability of the intersection of A and B is equal to the product of the probabilities of A and B:

If P(B) is not zero, then this is equivalent to the statement that

Similarly, if P(A) is not zero, then

is also equivalent. Although the derived forms may seem more intuitive, they are not the preferred definition as the conditional probabilities may be undefined, and the preferred definition is symmetrical in A and B. Independence does not refer to a disjoint event. [16]

It should also be noted that given the independent event pair [A B] and an event C, the pair is defined to be conditionally independent if the product holds true: [17]

This theorem could be useful in applications where multiple independent events are being observed.

Independent events vs. mutually exclusive events

The concepts of mutually independent events and mutually exclusive events are separate and distinct. The following table contrasts results for the two cases (provided that the probability of the conditioning event is not zero).

If statistically independentIf mutually exclusive
0
0
0

In fact, mutually exclusive events cannot be statistically independent (unless both of them are impossible), since knowing that one occurs gives information about the other (in particular, that the latter will certainly not occur).

Common fallacies

These fallacies should not be confused with Robert K. Shope's 1978 "conditional fallacy", which deals with counterfactual examples that beg the question.

Assuming conditional probability is of similar size to its inverse

A geometric visualization of Bayes' theorem. In the table, the values 2, 3, 6 and 9 give the relative weights of each corresponding condition and case. The figures denote the cells of the table involved in each metric, the probability being the fraction of each figure that is shaded. This shows that P(A|B) P(B) = P(B|A) P(A) i.e. P(A|B) =
.mw-parser-output .sfrac{white-space:nowrap}.mw-parser-output .sfrac.tion,.mw-parser-output .sfrac .tion{display:inline-block;vertical-align:-0.5em;font-size:85%;text-align:center}.mw-parser-output .sfrac .num{display:block;line-height:1em;margin:0.0em 0.1em;border-bottom:1px solid}.mw-parser-output .sfrac .den{display:block;line-height:1em;margin:0.1em 0.1em}.mw-parser-output .sr-only{border:0;clip:rect(0,0,0,0);height:1px;margin:-1px;overflow:hidden;padding:0;position:absolute;width:1px}
P(B|A) P(A)/P(B) . Similar reasoning can be used to show that P(A|B) =
P(B|A) P(A)/P(B) etc. Bayes theorem visualisation.svg
A geometric visualization of Bayes' theorem. In the table, the values 2, 3, 6 and 9 give the relative weights of each corresponding condition and case. The figures denote the cells of the table involved in each metric, the probability being the fraction of each figure that is shaded. This shows that P(A|B) P(B) = P(B|A) P(A) i.e. P(A|B) = P(B|A) P(A)/P(B) . Similar reasoning can be used to show that P(Ā|B) = P(B|Ā) P(Ā)/P(B) etc.

In general, it cannot be assumed that P(A|B)  P(B|A). This can be an insidious error, even for those who are highly conversant with statistics. [18] The relationship between P(A|B) and P(B|A) is given by Bayes' theorem:

That is, P(A|B)  P(B|A) only if P(B)/P(A)  1, or equivalently, P(A)  P(B).

Assuming marginal and conditional probabilities are of similar size

In general, it cannot be assumed that P(A)  P(A|B). These probabilities are linked through the law of total probability:

where the events form a countable partition of .

This fallacy may arise through selection bias. [19] For example, in the context of a medical claim, let SC be the event that a sequela (chronic disease) S occurs as a consequence of circumstance (acute condition) C. Let H be the event that an individual seeks medical help. Suppose that in most cases, C does not cause S (so that P(SC) is low). Suppose also that medical attention is only sought if S has occurred due to C. From experience of patients, a doctor may therefore erroneously conclude that P(SC) is high. The actual probability observed by the doctor is P(SC|H).

Over- or under-weighting priors

Not taking prior probability into account partially or completely is called base rate neglect . The reverse, insufficient adjustment from the prior probability is conservatism .

Formal derivation

Formally, P(A | B) is defined as the probability of A according to a new probability function on the sample space, such that outcomes not in B have probability 0 and that it is consistent with all original probability measures. [20] [21]

Let Ω be a discrete sample space with elementary events {ω}, and let P be the probability measure with respect to the σ-algebra of Ω. Suppose we are told that the event B  Ω has occurred. A new probability distribution (denoted by the conditional notation) is to be assigned on {ω} to reflect this. All events that are not in B will have null probability in the new distribution. For events in B, two conditions must be met: the probability of B is one and the relative magnitudes of the probabilities must be preserved. The former is required by the axioms of probability, and the latter stems from the fact that the new probability measure has to be the analog of P in which the probability of B is one - and every event that is not in B, therefore, has a null probability. Hence, for some scale factor α, the new distribution must satisfy:

Substituting 1 and 2 into 3 to select α:

So the new probability distribution is

Now for a general event A,

See also

Related Research Articles

<span class="mw-page-title-main">Independence (probability theory)</span> When the occurrence of one event does not affect the likelihood of another

Independence is a fundamental notion in probability theory, as in statistics and the theory of stochastic processes. Two events are independent, statistically independent, or stochastically independent if, informally speaking, the occurrence of one does not affect the probability of occurrence of the other or, equivalently, does not affect the odds. Similarly, two random variables are independent if the realization of one does not affect the probability distribution of the other.

In probability theory and statistics, Bayes' theorem, named after Thomas Bayes, describes the probability of an event, based on prior knowledge of conditions that might be related to the event. For example, if the risk of developing health problems is known to increase with age, Bayes' theorem allows the risk to an individual of a known age to be assessed more accurately by conditioning it relative to their age, rather than assuming that the individual is typical of the population as a whole.

In probability theory, there exist several different notions of convergence of sequences of random variables. The different notions of convergence capture different properties about the sequence, with some notions of convergence being stronger than others. For example, convergence in distribution tells us about the limit distribution of a sequence of random variables. This is a weaker notion than convergence in probability, which tells us about the value a random variable will take, rather than just the distribution.

<span class="mw-page-title-main">Law of large numbers</span> Averages of repeated trials converge to the expected value

In probability theory, the law of large numbers (LLN) is a mathematical theorem that states that the average of the results obtained from a large number of independent and identical random samples converges to the true value, if it exists. More formally, the LLN states that given a sample of independent and identically distributed values, the sample mean converges to the true mean.

In information theory, the asymptotic equipartition property (AEP) is a general property of the output samples of a stochastic source. It is fundamental to the concept of typical set used in theories of data compression.

In mathematics, the Lucas–Lehmer test (LLT) is a primality test for Mersenne numbers. The test was originally developed by Édouard Lucas in 1878 and subsequently proved by Derrick Henry Lehmer in 1930.

In probability theory, the conditional expectation, conditional expected value, or conditional mean of a random variable is its expected value evaluated with respect to the conditional probability distribution. If the random variable can take on only a finite number of values, the "conditions" are that the variable can only take on a subset of those values. More formally, in the case when the random variable is defined over a discrete probability space, the "conditions" are a partition of this probability space.

In probability theory, the Borel–Kolmogorov paradox is a paradox relating to conditional probability with respect to an event of probability zero. It is named after Émile Borel and Andrey Kolmogorov.

In probability theory, the Azuma–Hoeffding inequality gives a concentration result for the values of martingales that have bounded differences.

In probability theory and statistics, the conditional probability distribution is a probability distribution that describes the probability of an outcome given the occurrence of a particular event. Given two jointly distributed random variables and , the conditional probability distribution of given is the probability distribution of when is known to be a particular value; in some cases the conditional probabilities may be expressed as functions containing the unspecified value of as a parameter. When both and are categorical variables, a conditional probability table is typically used to represent the conditional probability. The conditional distribution contrasts with the marginal distribution of a random variable, which is its distribution without reference to the value of the other variable.

Harmonic balance is a method used to calculate the steady-state response of nonlinear differential equations, and is mostly applied to nonlinear electrical circuits. It is a frequency domain method for calculating the steady state, as opposed to the various time-domain steady-state methods. The name "harmonic balance" is descriptive of the method, which starts with Kirchhoff's Current Law written in the frequency domain and a chosen number of harmonics. A sinusoidal signal applied to a nonlinear component in a system will generate harmonics of the fundamental frequency. Effectively the method assumes a linear combination of sinusoids can represent the solution, then balances current and voltage sinusoids to satisfy Kirchhoff's law. The method is commonly used to simulate circuits which include nonlinear elements, and is most applicable to systems with feedback in which limit cycles occur.

In statistics, generalized least squares (GLS) is a method used to estimate the unknown parameters in a linear regression model. It is used when there is a non-zero amount of correlation between the residuals in the regression model. GLS is employed to improve statistical efficiency and reduce the risk of drawing erroneous inferences, as compared to conventional least squares and weighted least squares methods. It was first described by Alexander Aitken in 1935.

The theoretical and experimental justification for the Schrödinger equation motivates the discovery of the Schrödinger equation, the equation that describes the dynamics of nonrelativistic particles. The motivation uses photons, which are relativistic particles with dynamics described by Maxwell's equations, as an analogue for all types of particles.

In mathematics, the Melnikov method is a tool to identify the existence of chaos in a class of dynamical systems under periodic perturbation.

In mathematics, Schilder's theorem is a generalization of the Laplace method from integrals on to functional Wiener integration. The theorem is used in the large deviations theory of stochastic processes. Roughly speaking, out of Schilder's theorem one gets an estimate for the probability that a (scaled-down) sample path of Brownian motion will stray far from the mean path. This statement is made precise using rate functions. Schilder's theorem is generalized by the Freidlin–Wentzell theorem for Itō diffusions.

In probability theory, regular conditional probability is a concept that formalizes the notion of conditioning on the outcome of a random variable. The resulting conditional probability distribution is a parametrized family of probability measures called a Markov kernel.

In probability theory, the chain rule describes how to calculate the probability of the intersection of, not necessarily independent, events or the joint distribution of random variables respectively, using conditional probabilities. The rule is notably used in the context of discrete stochastic processes and in applications, e.g. the study of Bayesian networks, which describe a probability distribution in terms of conditional probabilities.

Bayesian hierarchical modelling is a statistical model written in multiple levels that estimates the parameters of the posterior distribution using the Bayesian method. The sub-models combine to form the hierarchical model, and Bayes' theorem is used to integrate them with the observed data and account for all the uncertainty that is present. The result of this integration is the posterior distribution, also known as the updated probability estimate, as additional evidence on the prior distribution is acquired.

The redundancy principle in biology expresses the need of many copies of the same entity to fulfill a biological function. Examples are numerous: disproportionate numbers of spermatozoa during fertilization compared to one egg, large number of neurotransmitters released during neuronal communication compared to the number of receptors, large numbers of released calcium ions during transient in cells, and many more in molecular and cellular transduction or gene activation and cell signaling. This redundancy is particularly relevant when the sites of activation are physically separated from the initial position of the molecular messengers. The redundancy is often generated for the purpose of resolving the time constraint of fast-activating pathways. It can be expressed in terms of the theory of extreme statistics to determine its laws and quantify how the shortest paths are selected. The main goal is to estimate these large numbers from physical principles and mathematical derivations.

Anelasticity is a property of materials that describes their behaviour when undergoing deformation. Its formal definition does not include the physical or atomistic mechanisms but still interprets the anelastic behaviour as a manifestation of internal relaxation processes. It is a behaviour differing from elastic behaviour.

References

  1. 1 2 Gut, Allan (2013). Probability: A Graduate Course (Second ed.). New York, NY: Springer. ISBN   978-1-4614-4707-8.
  2. 1 2 "Conditional Probability". www.mathsisfun.com. Retrieved 2020-09-11.
  3. Dekking, Frederik Michel; Kraaikamp, Cornelis; Lopuhaä, Hendrik Paul; Meester, Ludolf Erwin (2005). "A Modern Introduction to Probability and Statistics". Springer Texts in Statistics: 26. doi:10.1007/1-84628-168-7. ISBN   978-1-85233-896-1. ISSN   1431-875X.
  4. Dekking, Frederik Michel; Kraaikamp, Cornelis; Lopuhaä, Hendrik Paul; Meester, Ludolf Erwin (2005). "A Modern Introduction to Probability and Statistics". Springer Texts in Statistics: 25–40. doi:10.1007/1-84628-168-7. ISBN   978-1-85233-896-1. ISSN   1431-875X.
  5. Reichl, Linda Elizabeth (2016). "2.3 Probability". A Modern Course in Statistical Physics (4th revised and updated ed.). WILEY-VCH. ISBN   978-3-527-69049-7.
  6. Kolmogorov, Andrey (1956), Foundations of the Theory of Probability, Chelsea
  7. "Conditional Probability". www.stat.yale.edu. Retrieved 2020-09-11.
  8. Flaminio, Tommaso; Godo, Lluis; Hosni, Hykel (2020-09-01). "Boolean algebras of conditionals, probability and logic". Artificial Intelligence. 286: 103347. arXiv: 2006.04673 . doi:10.1016/j.artint.2020.103347. ISSN   0004-3702. S2CID   214584872.
  9. Van Fraassen, Bas C. (1976), Harper, William L.; Hooker, Clifford Alan (eds.), "Probabilities of Conditionals", Foundations of Probability Theory, Statistical Inference, and Statistical Theories of Science: Volume I Foundations and Philosophy of Epistemic Applications of Probability Theory, The University of Western Ontario Series in Philosophy of Science, Dordrecht: Springer Netherlands, pp. 261–308, doi:10.1007/978-94-010-1853-1_10, ISBN   978-94-010-1853-1 , retrieved 2021-12-04
  10. Gal, Yarin. "The Borel–Kolmogorov paradox" (PDF).
  11. 1 2 3 Draheim, Dirk (2017). "Generalized Jeffrey Conditionalization (A Frequentist Semantics of Partial Conditionalization)". Springer. Retrieved December 19, 2017.
  12. Jeffrey, Richard C. (1983), The Logic of Decision, 2nd edition, University of Chicago Press, ISBN   9780226395821
  13. "Bayesian Epistemology". Stanford Encyclopedia of Philosophy. 2017. Retrieved December 29, 2017.
  14. Casella, George; Berger, Roger L. (2002). Statistical Inference. Duxbury Press. ISBN   0-534-24312-6.
  15. "Conditional Probability and Independence" (PDF). Retrieved 2021-12-22.
  16. Tijms, Henk (2012). Understanding Probability (3 ed.). Cambridge: Cambridge University Press. doi:10.1017/cbo9781139206990. ISBN   978-1-107-65856-1.
  17. Pfeiffer, Paul E. (1978). Conditional Independence in Applied Probability. Boston, MA: Birkhäuser Boston. ISBN   978-1-4612-6335-7. OCLC   858880328.
  18. Paulos, J.A. (1988) Innumeracy: Mathematical Illiteracy and its Consequences, Hill and Wang. ISBN   0-8090-7447-8 (p. 63 et seq.)
  19. F. Thomas Bruss Der Wyatt-Earp-Effekt oder die betörende Macht kleiner Wahrscheinlichkeiten (in German), Spektrum der Wissenschaft (German Edition of Scientific American), Vol 2, 110–113, (2007).
  20. George Casella and Roger L. Berger (1990), Statistical Inference, Duxbury Press, ISBN   0-534-11958-1 (p. 18 et seq.)
  21. Grinstead and Snell's Introduction to Probability, p. 134