The article's lead section may need to be rewritten.(July 2023) |
The base rate fallacy, also called base rate neglect [2] or base rate bias, is a type of fallacy in which people tend to ignore the base rate (e.g., general prevalence) in favor of the individuating information (i.e., information pertaining only to a specific case). [3] For example, if someone hears that a friend is very shy and quiet, they might think the friend is more likely to be a librarian than a salesperson. However, there are far more salespeople than librarians overall - hence making it more likely that their friend is actually a salesperson, even if a greater proportion of librarians fit the description of being shy and quiet. Base rate neglect is a specific form of the more general extension neglect.
It is also called the prosecutor's fallacy or defense attorney's fallacy when applied to the results of statistical tests (such as DNA tests) in the context of law proceedings. These terms were introduced by William C. Thompson and Edward Schumann in 1987, [4] [5] although it has been argued that their definition of the prosecutor's fallacy extends to many additional invalid imputations of guilt or liability that are not analyzable as errors in base rates or Bayes's theorem. [6]
An example of the base rate fallacy is the false positive paradox (also known as accuracy paradox). This paradox describes situations where there are more false positive test results than true positives (this means the classifier has a low precision). For example, if a facial recognition camera can identify wanted criminals 99% accurately, but analyzes 10,000 people a day, the high accuracy is outweighed by the number of tests; because of this, the program's list of criminals will likely have far more civilians (false positives) than criminals (true positives) because there are far more civilians than criminals overall. The probability of a positive test result is determined not only by the accuracy of the test but also by the characteristics of the sampled population. [7] The fundamental issue is that the far higher prevalence of true negatives means that the pool of people testing positively will be dominated by false positives, given that even a small fraction of the much larger [negative] group will produce a larger number of indicated positives than the larger fraction of the much smaller [positive] group.
When the prevalence, the proportion of those who have a given condition, is lower than the test's false positive rate, even tests that have a very low risk of giving a false positive in an individual case will give more false than true positives overall. [8]
It is especially counter-intuitive when interpreting a positive result in a test on a low-prevalence population after having dealt with positive results drawn from a high-prevalence population. [8] If the false positive rate of the test is higher than the proportion of the new population with the condition, then a test administrator whose experience has been drawn from testing in a high-prevalence population may conclude from experience that a positive test result usually indicates a positive subject, when in fact a false positive is far more likely to have occurred.
Number of people | Infected | Uninfected | Total |
---|---|---|---|
Test positive | 400 (true positive) | 30 (false positive) | 430 |
Test negative | 0 (false negative) | 570 (true negative) | 570 |
Total | 400 | 600 | 1000 |
Imagine running an infectious disease test on a population A of 1,000 persons, of which 40% are infected. The test has a false positive rate of 5% (0.05) and a false negative rate of zero. The expected outcome of the 1,000 tests on population A would be:
So, in population A, a person receiving a positive test could be over 93% confident (400/30 + 400) that it correctly indicates infection.
Number of people | Infected | Uninfected | Total |
---|---|---|---|
Test positive | 20 (true positive) | 49 (false positive) | 69 |
Test negative | 0 (false negative) | 931 (true negative) | 931 |
Total | 20 | 980 | 1000 |
Now consider the same test applied to population B, of which only 2% are infected. The expected outcome of 1000 tests on population B would be:
In population B, only 20 of the 69 total people with a positive test result are actually infected. So, the probability of actually being infected after one is told that one is infected is only 29% (20/20 + 49) for a test that otherwise appears to be "95% accurate".
A tester with experience of group A might find it a paradox that in group B, a result that had usually correctly indicated infection is now usually a false positive. The confusion of the posterior probability of infection with the prior probability of receiving a false positive is a natural error after receiving a health-threatening test result.
Imagine that a group of police officers have breathalyzers displaying false drunkenness in 5% of the cases in which the driver is sober. However, the breathalyzers never fail to detect a truly drunk person. One in a thousand drivers is driving drunk. Suppose the police officers then stop a driver at random to administer a breathalyzer test. It indicates that the driver is drunk. No other information is known about them.
Many would estimate the probability that the driver is drunk as high as 95%, but the correct probability is about 2%.
An explanation for this is as follows: on average, for every 1,000 drivers tested,
Therefore, the probability that any given driver among the 1 + 49.95 = 50.95 positive test results really is drunk is .
The validity of this result does, however, hinge on the validity of the initial assumption that the police officer stopped the driver truly at random, and not because of bad driving. If that or another non-arbitrary reason for stopping the driver was present, then the calculation also involves the probability of a drunk driver driving competently and a non-drunk driver driving (in-)competently.
More formally, the same probability of roughly 0.02 can be established using Bayes' theorem. The goal is to find the probability that the driver is drunk given that the breathalyzer indicated they are drunk, which can be represented as
where D means that the breathalyzer indicates that the driver is drunk. Using Bayes's theorem,
The following information is known in this scenario:
As can be seen from the formula, one needs p(D) for Bayes' theorem, which can be computed from the preceding values using the law of total probability:
which gives
Plugging these numbers into Bayes' theorem, one finds that
which is the precision of the test.
In a city of 1 million inhabitants, let there be 100 terrorists and 999,900 non-terrorists. To simplify the example, it is assumed that all people present in the city are inhabitants. Thus, the base rate probability of a randomly selected inhabitant of the city being a terrorist is 0.0001, and the base rate probability of that same inhabitant being a non-terrorist is 0.9999. In an attempt to catch the terrorists, the city installs an alarm system with a surveillance camera and automatic facial recognition software.
The software has two failure rates of 1%:
Suppose now that an inhabitant triggers the alarm. Someone making the base rate fallacy would infer that there is a 99% probability that the detected person is a terrorist. Although the inference seems to make sense, it is actually bad reasoning, and a calculation below will show that the probability of a terrorist is actually near 1%, not near 99%.
The fallacy arises from confusing the natures of two different failure rates. The 'number of non-bells per 100 terrorists' (P(¬B | T), or the probability that the bell fails to ring given the inhabitant is a terrorist) and the 'number of non-terrorists per 100 bells' (P(¬T | B), or the probability that the inhabitant is a non-terrorist given the bell rings) are unrelated quantities; one does not necessarily equal—or even be close to—the other. To show this, consider what happens if an identical alarm system were set up in a second city with no terrorists at all. As in the first city, the alarm sounds for 1 out of every 100 non-terrorist inhabitants detected, but unlike in the first city, the alarm never sounds for a terrorist. Therefore, 100% of all occasions of the alarm sounding are for non-terrorists, but a false negative rate cannot even be calculated. The 'number of non-terrorists per 100 bells' in that city is 100, yet P(T | B) = 0%. There is zero chance that a terrorist has been detected given the ringing of the bell.
Imagine that the first city's entire population of one million people pass in front of the camera. About 99 of the 100 terrorists will trigger the alarm—and so will about 9,999 of the 999,900 non-terrorists. Therefore, about 10,098 people will trigger the alarm, among which about 99 will be terrorists. The probability that a person triggering the alarm actually is a terrorist is only about 99 in 10,098, which is less than 1% and very, very far below the initial guess of 99%.
The base rate fallacy is so misleading in this example because there are many more non-terrorists than terrorists, and the number of false positives (non-terrorists scanned as terrorists) is so much larger than the true positives (terrorists scanned as terrorists).
Multiple practitioners have argued that as the base rate of terrorism is extremely low, using data mining and predictive algorithms to identify terrorists cannot feasibly work due to the false positive paradox. [9] [10] [11] [12] Estimates of the number of false positives for each accurate result vary from over ten thousand [12] to one billion; [10] consequently, investigating each lead would be cost- and time-prohibitive. [9] [11] The level of accuracy required to make these models viable is likely unachievable. Foremost, the low base rate of terrorism also means there is a lack of data with which to make an accurate algorithm. [11] Further, in the context of detecting terrorism false negatives are highly undesirable and thus must be minimised as much as possible; however, this requires increasing sensitivity at the cost of specificity, increasing false positives. [12] It is also questionable whether the use of such models by law enforcement would meet the requisite burden of proof given that over 99% of results would be false positives. [12]
A crime is committed. Forensic analysis determines that the perpetrator has a certain blood type shared by 10% of the population. A suspect is arrested, and found to have that same blood type.
A prosecutor might charge the suspect with the crime on that basis alone, and claim at trial that the probability that the defendant is guilty is 90%.
However, this conclusion is only close to correct if the defendant was selected as the main suspect based on robust evidence discovered prior to the blood test and unrelated to it. Otherwise, the reasoning presented is flawed, as it overlooks the high prior probability (that is, prior to the blood test) that he is a random innocent person. Assume, for instance, that 1000 people live in the town where the crime occurred. This means that 100 people live there who have the perpetrator's blood type, of whom only one is the true perpetrator; therefore, the true probability that the defendant is guilty – based only on the fact that his blood type matches that of the killer – is only 1%, far less than the 90% argued by the prosecutor.
The prosecutor's fallacy involves assuming that the prior probability of a random match is equal to the probability that the defendant is innocent. When using it, a prosecutor questioning an expert witness may ask: "The odds of finding this evidence on an innocent man are so small that the jury can safely disregard the possibility that this defendant is innocent, correct?" [13] The claim assumes that the probability that evidence is found on an innocent man is the same as the probability that a man is innocent given that evidence was found on him, which is not true. Whilst the former is usually small (10% in the previous example) due to good forensic evidence procedures, the latter (99% in that example) does not directly relate to it and will often be much higher, since, in fact, it depends on the likely quite high prior odds of the defendant being a random innocent person.
O. J. Simpson was tried and acquitted in 1995 for the murders of his ex-wife Nicole Brown Simpson and her friend Ronald Goldman.
Crime scene blood matched Simpson's with characteristics shared by 1 in 400 people. However, the defense argued that the number of people from Los Angeles matching the sample could fill a football stadium and that the figure of 1 in 400 was useless. [14] [15] It would have been incorrect, and an example of prosecutor's fallacy, to rely solely on the "1 in 400" figure to deduce that a given person matching the sample would be likely to be the culprit.
In the same trial, the prosecution presented evidence that Simpson had been violent toward his wife. The defense argued that there was only one woman murdered for every 2500 women who were subjected to spousal abuse, and that any history of Simpson being violent toward his wife was irrelevant to the trial. However, the reasoning behind the defense's calculation was fallacious. According to author Gerd Gigerenzer, the correct probability requires additional context: Simpson's wife had not only been subjected to domestic violence, but rather subjected to domestic violence (by Simpson) and killed (by someone). Gigerenzer writes "the chances that a batterer actually murdered his partner, given that she has been killed, is about 8 in 9 or approximately 90%". [16] While most cases of spousal abuse do not end in murder, most cases of murder where there is a history of spousal abuse were committed by the spouse.
Sally Clark, a British woman, was accused in 1998 of having killed her first child at 11 weeks of age and then her second child at 8 weeks of age. The prosecution had expert witness Sir Roy Meadow, a professor and consultant paediatrician, [17] testify that the probability of two children in the same family dying from SIDS is about 1 in 73 million. That was much less frequent than the actual rate measured in historical data – Meadow estimated it from single-SIDS death data, and the assumption that the probability of such deaths should be uncorrelated between infants. [18]
Meadow acknowledged that 1-in-73 million is not an impossibility, but argued that such accidents would happen "once every hundred years" and that, in a country of 15 million 2-child families, it is vastly more likely that the double-deaths are due to Münchausen syndrome by proxy than to such a rare accident. However, there is good reason to suppose that the likelihood of a death from SIDS in a family is significantly greater if a previous child has already died in these circumstances, (a genetic predisposition to SIDS is likely to invalidate that assumed statistical independence [19] ) making some families more susceptible to SIDS and the error an outcome of the ecological fallacy. [20] The likelihood of two SIDS deaths in the same family cannot be soundly estimated by squaring the likelihood of a single such death in all otherwise similar families. [21]
The 1-in-73 million figure greatly underestimated the chance of two successive accidents, but even if that assessment were accurate, the court seems to have missed the fact that the 1-in-73 million number meant nothing on its own. As an a priori probability, it should have been weighed against the a priori probabilities of the alternatives. Given that two deaths had occurred, one of the following explanations must be true, and all of them are a priori extremely improbable:
It is unclear whether an estimate of the probability for the second possibility was ever proposed during the trial, or whether the comparison of the first two probabilities was understood to be the key estimate to make in the statistical analysis assessing the prosecution's case against the case for innocence.
Clark was convicted in 1999, resulting in a press release by the Royal Statistical Society which pointed out the mistakes. [22]
In 2002, Ray Hill (a mathematics professor at Salford) attempted to accurately compare the chances of these two possible explanations; he concluded that successive accidents are between 4.5 and 9 times more likely than are successive murders, so that the a priori odds of Clark's guilt were between 4.5 to 1 and 9 to 1 against. [23]
After the court found that the forensic pathologist who had examined both babies had withheld exculpatory evidence, a higher court later quashed Clark's conviction, on 29 January 2003. [24]
In experiments, people have been found to prefer individuating information over general information when the former is available. [25] [26] [27]
In some experiments, students were asked to estimate the grade point averages (GPAs) of hypothetical students. When given relevant statistics about GPA distribution, students tended to ignore them if given descriptive information about the particular student even if the new descriptive information was obviously of little or no relevance to school performance. [26] This finding has been used to argue that interviews are an unnecessary part of the college admissions process because interviewers are unable to pick successful candidates better than basic statistics.
Psychologists Daniel Kahneman and Amos Tversky attempted to explain this finding in terms of a simple rule or "heuristic" called representativeness. They argued that many judgments relating to likelihood, or to cause and effect, are based on how representative one thing is of another, or of a category. [26] Kahneman considers base rate neglect to be a specific form of extension neglect. [28] Richard Nisbett has argued that some attributional biases like the fundamental attribution error are instances of the base rate fallacy: people do not use the "consensus information" (the "base rate") about how others behaved in similar situations and instead prefer simpler dispositional attributions. [29]
There is considerable debate in psychology on the conditions under which people do or do not appreciate base rate information. [30] [31] Researchers in the heuristics-and-biases program have stressed empirical findings showing that people tend to ignore base rates and make inferences that violate certain norms of probabilistic reasoning, such as Bayes' theorem. The conclusion drawn from this line of research was that human probabilistic thinking is fundamentally flawed and error-prone. [32] Other researchers have emphasized the link between cognitive processes and information formats, arguing that such conclusions are not generally warranted. [33] [34]
Consider again Example 2 from above. The required inference is to estimate the (posterior) probability that a (randomly picked) driver is drunk, given that the breathalyzer test is positive. Formally, this probability can be calculated using Bayes' theorem, as shown above. However, there are different ways of presenting the relevant information. Consider the following, formally equivalent variant of the problem:
In this case, the relevant numerical information—p(drunk), p(D | drunk), p(D | sober)—is presented in terms of natural frequencies with respect to a certain reference class (see reference class problem). Empirical studies show that people's inferences correspond more closely to Bayes' rule when information is presented this way, helping to overcome base-rate neglect in laypeople [34] and experts. [35] As a consequence, organizations like the Cochrane Collaboration recommend using this kind of format for communicating health statistics. [36] Teaching people to translate these kinds of Bayesian reasoning problems into natural frequency formats is more effective than merely teaching them to plug probabilities (or percentages) into Bayes' theorem. [37] It has also been shown that graphical representations of natural frequencies (e.g., icon arrays, hypothetical outcome plots) help people to make better inferences. [37] [38] [39] [40]
One important reason why natural frequency formats are helpful is that this information format facilitates the required inference because it simplifies the necessary calculations. This can be seen when using an alternative way of computing the required probability p(drunk|D):
where N(drunk ∩D) denotes the number of drivers that are drunk and get a positive breathalyzer result, and N(D) denotes the total number of cases with a positive breathalyzer result. The equivalence of this equation to the above one follows from the axioms of probability theory, according to which N(drunk ∩D) = N × p (D | drunk) × p (drunk). Importantly, although this equation is formally equivalent to Bayes' rule, it is not psychologically equivalent. Using natural frequencies simplifies the inference because the required mathematical operation can be performed on natural numbers, instead of normalized fractions (i.e., probabilities), because it makes the high number of false positives more transparent, and because natural frequencies exhibit a "nested-set structure". [41] [42]
Not every frequency format facilitates Bayesian reasoning. [42] [43] Natural frequencies refer to frequency information that results from natural sampling, [44] which preserves base rate information (e.g., number of drunken drivers when taking a random sample of drivers). This is different from systematic sampling, in which base rates are fixed a priori (e.g., in scientific experiments). In the latter case it is not possible to infer the posterior probability p(drunk | positive test) from comparing the number of drivers who are drunk and test positive compared to the total number of people who get a positive breathalyzer result, because base rate information is not preserved and must be explicitly re-introduced using Bayes' theorem.
A cognitive bias is a systematic pattern of deviation from norm or rationality in judgment. Individuals create their own "subjective reality" from their perception of the input. An individual's construction of reality, not the objective input, may dictate their behavior in the world. Thus, cognitive biases may sometimes lead to perceptual distortion, inaccurate judgment, illogical interpretation, and irrationality.
Bayes' theorem gives a mathematical rule for inverting conditional probabilities, allowing us to find the probability of a cause given its effect. For example, if the risk of developing health problems is known to increase with age, Bayes' theorem allows the risk to an individual of a known age to be assessed more accurately by conditioning it relative to their age, rather than assuming that the individual is typical of the population as a whole. Based on Bayes law both the prevalence of a disease in a given population and the error rate of an infectious disease test have to be taken into account to evaluate the meaning of a positive test result correctly and avoid the base-rate fallacy.
The representativeness heuristic is used when making judgments about the probability of an event being representional in character and essence of a known prototypical event. It is one of a group of heuristics proposed by psychologists Amos Tversky and Daniel Kahneman in the early 1970s as "the degree to which [an event] (i) is similar in essential characteristics to its parent population, and (ii) reflects the salient features of the process by which it is generated". The representativeness heuristic works by comparing an event to a prototype or stereotype that we already have in mind. For example, if we see a person who is dressed in eccentric clothes and reading a poetry book, we might be more likely to think that they are a poet than an accountant. This is because the person's appearance and behavior are more representative of the stereotype of a poet than an accountant.
The conjunction fallacy is an inference that a conjoint set of two or more specific conclusions is likelier than any single member of that same set, in violation of the laws of probability. It is a type of formal fallacy.
Gerd Gigerenzer is a German psychologist who has studied the use of bounded rationality and heuristics in decision making. Gigerenzer is director emeritus of the Center for Adaptive Behavior and Cognition (ABC) at the Max Planck Institute for Human Development, Berlin, director of the Harding Center for Risk Literacy, University of Potsdam, and vice president of the European Research Council (ERC).
Given a population whose members each belong to one of a number of different sets or classes, a classification rule or classifier is a procedure by which the elements of the population set are each predicted to belong to one of the classes. A perfect classification is one for which every element in the population is assigned to the class it really belongs to. The bayes classifier is the classifier which assigns classes optimally based on the known attributes of the elements to be classified.
The overconfidence effect is a well-established bias in which a person's subjective confidence in their judgments is reliably greater than the objective accuracy of those judgments, especially when confidence is relatively high. Overconfidence is one example of a miscalibration of subjective probabilities. Throughout the research literature, overconfidence has been defined in three distinct ways: (1) overestimation of one's actual performance; (2) overplacement of one's performance relative to others; and (3) overprecision in expressing unwarranted certainty in the accuracy of one's beliefs.
In statistics, the false discovery rate (FDR) is a method of conceptualizing the rate of type I errors in null hypothesis testing when conducting multiple comparisons. FDR-controlling procedures are designed to control the FDR, which is the expected proportion of "discoveries" that are false. Equivalently, the FDR is the expected ratio of the number of false positive classifications to the total number of positive classifications. The total number of rejections of the null include both the number of false positives (FP) and true positives (TP). Simply put, FDR = FP /. FDR-controlling procedures provide less stringent control of Type I errors compared to family-wise error rate (FWER) controlling procedures, which control the probability of at least one Type I error. Thus, FDR-controlling procedures have greater power, at the cost of increased numbers of Type I errors.
In statistics, family-wise error rate (FWER) is the probability of making one or more false discoveries, or type I errors when performing multiple hypotheses tests.
In statistical hypothesis testing, a type I error, or a false positive, is the rejection of the null hypothesis when it is actually true. A type II error, or a false negative, is the failure to reject a null hypothesis that is actually false.
In statistics, the multiple comparisons, multiplicity or multiple testing problem occurs when one considers a set of statistical inferences simultaneously or estimates a subset of parameters selected based on the observed values.
In pattern recognition, information retrieval, object detection and classification, precision and recall are performance metrics that apply to data retrieved from a collection, corpus or sample space.
Confusion of the inverse, also called the conditional probability fallacy or the inverse fallacy, is a logical fallacy whereupon a conditional probability is equated with its inverse; that is, given two events A and B, the probability of A happening given that B has happened is assumed to be about the same as the probability of B given A, when there is actually no evidence for this assumption. More formally, P(A|B) is assumed to be approximately equal to P(B|A).
In statistics, when performing multiple comparisons, a false positive ratio is the probability of falsely rejecting the null hypothesis for a particular test. The false positive rate is calculated as the ratio between the number of negative events wrongly categorized as positive and the total number of actual negative events.
Heuristics is the process by which humans use mental shortcuts to arrive at decisions. Heuristics are simple strategies that humans, animals, organizations, and even machines use to quickly form judgments, make decisions, and find solutions to complex problems. Often this involves focusing on the most relevant aspects of a problem or situation to formulate a solution. While heuristic processes are used to find the answers and solutions that are most likely to work or be correct, they are not always right or the most accurate. Judgments and decisions based on heuristics are simply good enough to satisfy a pressing need in situations of uncertainty, where information is incomplete. In that sense they can differ from answers given by logic and probability.
The frequency format hypothesis is the idea that the brain understands and processes information better when presented in frequency formats rather than a numerical or probability format. Thus according to the hypothesis, presenting information as 1 in 5 people rather than 20% leads to better comprehension. The idea was proposed by German scientist Gerd Gigerenzer, after compilation and comparison of data collected between 1976 and 1997.
A false positive is an error in binary classification in which a test result incorrectly indicates the presence of a condition, while a false negative is the opposite error, where the test result incorrectly indicates the absence of a condition when it is actually present. These are the two kinds of errors in a binary test, in contrast to the two kinds of correct result. They are also known in medicine as a false positivediagnosis, and in statistical classification as a false positiveerror.
Misuse of p-values is common in scientific research and scientific education. p-values are often used or interpreted incorrectly; the American Statistical Association states that p-values can indicate how incompatible the data are with a specified statistical model. From a Neyman–Pearson hypothesis testing approach to statistical inferences, the data obtained by comparing the p-value to a significance level will yield one of two results: either the null hypothesis is rejected, or the null hypothesis cannot be rejected at that significance level. From a Fisherian statistical testing approach to statistical inferences, a low p-value means either that the null hypothesis is true and a highly improbable event has occurred or that the null hypothesis is false.
Intuitive statistics, or folk statistics, is the cognitive phenomenon where organisms use data to make generalizations and predictions about the world. This can be a small amount of sample data or training instances, which in turn contribute to inductive inferences about either population-level properties, future data, or both. Inferences can involve revising hypotheses, or beliefs, in light of probabilistic data that inform and motivate future predictions. The informal tendency for cognitive animals to intuitively generate statistical inferences, when formalized with certain axioms of probability theory, constitutes statistics as an academic discipline.
If the exposure to COVID-19 stays the same, as more individuals are vaccinated, more cases, hospitalizations, and deaths will be in vaccinated individuals, as they will continue to make up more and more of the population. For example, if 100% of the population was vaccinated, 100% of cases would be among vaccinated people.
MESSAGE: False positive tests are more probable than true positive tests when the overall population has a low prevalence of the disease. This is called the false-positive paradox.
At first glance, this seems perverse: the less the students as a whole use steroids, the more likely a student identified as a user will be a non-user. This has been called the False Positive Paradox- Citing: Gonick, L.; Smith, W. (1993). The cartoon guide to statistics. New York: Harper Collins. p. 49.
it is patently unfair to use the characteristics which basically make her a good, clean-living, mother as factors which count against her. Yes, we can agree that such factors make a natural death less likely – but those same characteristics also make murder less likely.
Society does not tolerate doctors making serious clinical errors because it is widely understood that such errors could mean the difference between life and death. The case of R v. Sally Clark is one example of a medical expert witness making a serious statistical error, one which may have had a profound effect on the outcome of the case