Denying the antecedent

Last updated

Denying the antecedent (also known as inverse error or fallacy of the inverse) is a formal fallacy of inferring the inverse from an original statement. Phrased another way, denying the antecedent occurs in the context of an indicative conditional statement and assumes that the negation of the antecedent implies the negation of the consequent. It is a type of mixed hypothetical syllogism that takes on the following form: [1]

Contents

If P, then Q.
Not P.
Therefore, not Q.

which may also be phrased as

(P implies Q)
(therefore, not-P implies not-Q) [1]

Arguments of this form are invalid. Informally, this means that arguments of this form do not give good reason to establish their conclusions, even if their premises are true.

The name denying the antecedent derives from the premise "not P", which denies the "if" clause (antecedent) of the conditional premise.

The only situation where one may deny the antecedent would be if the antecedent and consequent represent the same proposition, in which case the argument is trivially valid (and it would beg the question) under the logic of modus tollens .

A related fallacy is affirming the consequent. Two related valid forms of logical arguments include modus ponens (affirming the antecedent) and modus tollens (denying the consequent).

Examples

One way to demonstrate the invalidity of this argument form is with an example that has true premises but an obviously false conclusion. For example:

If you are a ski instructor, then you have a job.
You are not a ski instructor.
Therefore, you have no job. [1]

That argument is intentionally bad, but arguments of the same form can sometimes seem superficially convincing, as in the following example offered by Alan Turing in the article "Computing Machinery and Intelligence":

If each man had a definite set of rules of conduct by which he regulated his life he would be no better than a machine. But there are no such rules, so men cannot be machines. [2]

However, men could still be machines that do not follow a definite set of rules. Thus, this argument (as Turing intends) is invalid.

Another example is:

If I am President of the United States, then I can veto Congress.
I am not President.
Therefore, I cannot veto Congress.

[This is a case of the fallacy denying the antecedent as written because it matches the formal symbolic schema at beginning. The form is taken without regard to the content of the language.]

See also

Related Research Articles

In propositional logic, affirming the consequent is a formal fallacy that is committed when, in the context of an indicative conditional statement, it is stated that because the consequent is true, therefore the antecedent is true. It takes on the following form:

In classical logic, disjunctive syllogism is a valid argument form which is a syllogism having a disjunctive statement for one of its premises.

In propositional logic, modus ponens, also known as modus ponendo ponens, implication elimination, or affirming the antecedent, is a deductive argument form and rule of inference. It can be summarized as "P implies Q.P is true. Therefore, Q must also be true."

In propositional logic, modus tollens (MT), also known as modus tollendo tollens and denying the consequent, is a deductive argument form and a rule of inference. Modus tollens is a mixed hypothetical syllogism that takes the form of "If P, then Q. Not Q. Therefore, not P." It is an application of the general truth that if a statement is true, then so is its contrapositive. The form shows that inference from P implies Q to the negation of Q implies the negation of P is a valid argument.

Deductive reasoning is the process of drawing valid inferences. An inference is valid if its conclusion follows logically from its premises, meaning that it is impossible for the premises to be true and the conclusion to be false. For example, the inference from the premises "all men are mortal" and "Socrates is a man" to the conclusion "Socrates is mortal" is deductively valid. An argument is sound if it is valid and all its premises are true. One approach defines deduction in terms of the intentions of the author: they have to intend for the premises to offer deductive support to the conclusion. With the help of this modification, it is possible to distinguish valid from invalid deductive reasoning: it is invalid if the author's belief about the deductive support is false, but even invalid deductive reasoning is a form of deductive reasoning.

In logic and mathematics, necessity and sufficiency are terms used to describe a conditional or implicational relationship between two statements. For example, in the conditional statement: "If P then Q", Q is necessary for P, because the truth of Q is guaranteed by the truth of P. Similarly, P is sufficient for Q, because P being true always implies that Q is true, but P not being true does not always imply that Q is not true.

In classical logic, a hypothetical syllogism is a valid argument form, a deductive syllogism with a conditional statement for one or both of its premises. Ancient references point to the works of Theophrastus and Eudemus for the first investigation of this kind of syllogisms.

<span class="mw-page-title-main">Logical biconditional</span> Concept in logic and mathematics

In logic and mathematics, the logical biconditional, also known as material biconditional or equivalence or biimplication or bientailment, is the logical connective used to conjoin two statements and to form the statement " if and only if ", where is known as the antecedent, and the consequent.

Modus ponendo tollens is a valid rule of inference for propositional logic. It is closely related to modus ponens and modus tollendo ponens.

<span class="mw-page-title-main">Material conditional</span> Logical connective

The material conditional is an operation commonly used in logic. When the conditional symbol is interpreted as material implication, a formula is true unless is true and is false. Material implication can also be characterized inferentially by modus ponens, modus tollens, conditional proof, and classical reductio ad absurdum.

Destructive dilemma is the name of a valid rule of inference of propositional logic. It is the inference that, if P implies Q and R implies S and either Q is false or S is false, then either P or R must be false. In sum, if two conditionals are true, but one of their consequents is false, then one of their antecedents has to be false. Destructive dilemma is the disjunctive version of modus tollens. The disjunctive version of modus ponens is the constructive dilemma. The destructive dilemma rule can be stated:

In philosophical logic, the masked-man fallacy is committed when one makes an illicit use of Leibniz's law in an argument. Leibniz's law states that if A and B are the same object, then A and B are indiscernible. By modus tollens, this means that if one object has a certain property, while another object does not have the same property, the two objects cannot be identical. The fallacy is "epistemic" because it posits an immediate identity between a subject's knowledge of an object with the object itself, failing to recognize that Leibniz's Law is not capable of accounting for intensional contexts.

In logic, the logical form of a statement is a precisely-specified semantic version of that statement in a formal system. Informally, the logical form attempts to formalize a possibly ambiguous statement into a statement with a precise, unambiguous logical interpretation with respect to a formal system. In an ideal formal language, the meaning of a logical form can be determined unambiguously from syntax alone. Logical forms are semantic, not syntactic constructs; therefore, there may be more than one string that represents the same logical form in a given language.

Epistemic modal logic is a subfield of modal logic that is concerned with reasoning about knowledge. While epistemology has a long philosophical tradition dating back to Ancient Greece, epistemic logic is a much more recent development with applications in many fields, including philosophy, theoretical computer science, artificial intelligence, economics, and linguistics. While philosophers since Aristotle have discussed modal logic, and Medieval philosophers such as Avicenna, Ockham, and Duns Scotus developed many of their observations, it was C. I. Lewis who created the first symbolic and systematic approach to the topic, in 1912. It continued to mature as a field, reaching its modern form in 1963 with the work of Kripke.

Logic is the formal science of using reason and is considered a branch of both philosophy and mathematics and to a lesser extent computer science. Logic investigates and classifies the structure of statements and arguments, both through the study of formal systems of inference and the study of arguments in natural language. The scope of logic can therefore be very large, ranging from core topics such as the study of fallacies and paradoxes, to specialized analyses of reasoning such as probability, correct reasoning, and arguments involving causality. One of the aims of logic is to identify the correct and incorrect inferences. Logicians study the criteria for the evaluation of arguments.

In logic and mathematics, contraposition, or transposition, refers to the inference of going from a conditional statement into its logically equivalent contrapositive, and an associated proof method known as § Proof by contrapositive. The contrapositive of a statement has its antecedent and consequent inverted and flipped.

<span class="mw-page-title-main">Peirce's law</span> Axiom used in logic and philosophy

In logic, Peirce's law is named after the philosopher and logician Charles Sanders Peirce. It was taken as an axiom in his first axiomatisation of propositional logic. It can be thought of as the law of excluded middle written in a form that involves only one sort of connective, namely implication.

References

  1. 1 2 3 Matthew C. Harris. "Denying the antecedent". Khan academy.
  2. Turing, Alan (October 1950). "Computing Machinery and Intelligence". Mind . 59 (236): 433–460. doi:10.1093/mind/LIX.236.433. ISSN   1460-2113. JSTOR   2251299. S2CID   14636783.