Fallacy of exclusive premises

Last updated

The fallacy of exclusive premises is a syllogistic fallacy committed in a categorical syllogism that is invalid because both of its premises are negative. [1]

Contents

Example of an EOO-4 type invalid syllogism

E Proposition: No cats are dogs.
O Proposition: Some dogs are not pets.
O Proposition: Therefore, some pets are not cats.

Explanation of Example 1:

This may seem like a logical conclusion, as it appears to be logically derived that if Some dogs are not pets, then surely some are pets, otherwise, the premise would have stated "No Dogs are pets", and if some pets are dogs, then not all pets can be cats, thus, some pets are not cats. But if this assumption is applied to the final statement then we have drawn the conclusion: some pets are cats. But this is not supported by either premise. Cats not being dogs, and the state of dogs as either pets or not, has nothing to do with whether cats are pets. Two negative premises cannot give a logical foundation for a conclusion, as they will invariably be independent statements that cannot be directly related, thus the name 'Exclusive Premises'. It is made more clear when the subjects in the argument are more clearly unrelated such as the following:

Additional Example of an EOO-4 invalid syllogism

E Proposition: No planets are dogs.
O Proposition: Some dogs are not pets.
O Proposition: Therefore, some pets are not planets.

Explanation of Example 2:

In this example we can more clearly see that the physical difference between a dog and a planet is not causally linked to the domestication of dogs. The two premises are exclusive and the subsequent conclusion is nonsense, as the transpose would imply that some pets are planets.

Conclusion:

The verisimilitude of the final statement is not relevant in this fallacy. The conclusions in both examples are uncontroversial; however, both are argued on fallacious logic and would not hold up as valid arguments.

See also

Related Research Articles

<span class="mw-page-title-main">False dilemma</span> Informal fallacy involving falsely limited alternatives

A false dilemma, also referred to as false dichotomy or false binary, is an informal fallacy based on a premise that erroneously limits what options are available. The source of the fallacy lies not in an invalid form of inference but in a false premise. This premise has the form of a disjunctive claim: it asserts that one among a number of alternatives must be true. This disjunction is problematic because it oversimplifies the choice by excluding viable alternatives, presenting the viewer with only two absolute choices when, in fact, there could be many.

<span class="mw-page-title-main">Syllogism</span> Type of logical argument that applies deductive reasoning

A syllogism is a kind of logical argument that applies deductive reasoning to arrive at a conclusion based on two propositions that are asserted or assumed to be true.

Deductive reasoning is the process of drawing valid inferences. An inference is valid if its conclusion follows logically from its premises, meaning that it is impossible for the premises to be true and the conclusion to be false. For example, the inference from the premises "all men are mortal" and "Socrates is a man" to the conclusion "Socrates is mortal" is deductively valid. An argument is sound if it is valid and all its premises are true. One approach defines deduction in terms of the intentions of the author: they have to intend for the premises to offer deductive support to the conclusion. With the help of this modification, it is possible to distinguish valid from invalid deductive reasoning: it is invalid if the author's belief about the deductive support is false, but even invalid deductive reasoning is a form of deductive reasoning.

In logic and formal semantics, term logic, also known as traditional logic, syllogistic logic or Aristotelian logic, is a loose name for an approach to formal logic that began with Aristotle and was developed further in ancient history mostly by his followers, the Peripatetics. It was revived after the third century CE by Porphyry's Isagoge.

The fallacy of the undistributed middle is a formal fallacy that is committed when the middle term in a categorical syllogism is not distributed in either the minor premise or the major premise. It is thus a syllogistic fallacy.

Affirmative conclusion from a negative premise is a formal fallacy that is committed when a categorical syllogism has a positive conclusion and one or two negative premises.

A polysyllogism is a complex argument that strings together any number of propositions forming together a sequence of syllogisms such that the conclusion of each syllogism, together with the next proposition, is a premise for the next, and so on. Each constituent syllogism is called a prosyllogism except the last, because the conclusion of the last syllogism is not a premise for another syllogism.

The fallacy of four terms is the formal fallacy that occurs when a syllogism has four terms rather than the requisite three, rendering it invalid.

Illicit major is a formal fallacy committed in a categorical syllogism that is invalid because its major term is undistributed in the major premise but distributed in the conclusion.

Belief bias is the tendency to judge the strength of arguments based on the plausibility of their conclusion rather than how strongly they justify that conclusion. A person is more likely to accept an argument that supports a conclusion that aligns with their values, beliefs and prior knowledge, while rejecting counter arguments to the conclusion. Belief bias is an extremely common and therefore significant form of error; we can easily be blinded by our beliefs and reach the wrong conclusion. Belief bias has been found to influence various reasoning tasks, including conditional reasoning, relation reasoning and transitive reasoning.

In logic, a categorical proposition, or categorical statement, is a proposition that asserts or denies that all or some of the members of one category are included in another. The study of arguments using categorical statements forms an important branch of deductive reasoning that began with the Ancient Greeks.

In logic and philosophy, a formal fallacy is a pattern of reasoning rendered invalid by a flaw in its logical structure. Propositional logic, for example, is concerned with the meanings of sentences and the relationships between them. It focuses on the role of logical operators, called propositional connectives, in determining whether a sentence is true. An error in the sequence will result in a deductive argument that is invalid. The argument itself could have true premises, but still have a false conclusion. Thus, a formal fallacy is a fallacy in which deduction goes wrong, and is no longer a logical process. This may not affect the truth of the conclusion, since validity and truth are separate in formal logic.

A premise or premiss is a proposition—a true or false declarative statement—used in an argument to prove the truth of another proposition called the conclusion. Arguments consist of a set of premises and a conclusion.

An argument is a series of sentences, statements, or propositions some of which are called premises and one is the conclusion. The purpose of an argument is to give reasons for one's conclusion via justification, explanation, and/or persuasion.

In Aristotelian logic, dictum de omni et nullo is the principle that whatever is affirmed or denied of a whole kind K may be affirmed or denied (respectively) of any subkind of K. This principle is fundamental to syllogistic logic in the sense that all valid syllogistic argument forms are reducible to applications of the two constituent principles dictum de omni and dictum de nullo.

In logic, specifically in deductive reasoning, an argument is valid if and only if it takes a form that makes it impossible for the premises to be true and the conclusion nevertheless to be false. It is not required for a valid argument to have premises that are actually true, but to have premises that, if they were true, would guarantee the truth of the argument's conclusion. Valid arguments must be clearly expressed by means of sentences called well-formed formulas.

Negative conclusion from affirmative premises is a syllogistic fallacy committed when a categorical syllogism has a negative conclusion yet both premises are affirmative. The inability of affirmative premises to reach a negative conclusion is usually cited as one of the basic rules of constructing a valid categorical syllogism.

<span class="mw-page-title-main">Logic</span> Study of correct reasoning

Logic is the study of correct reasoning. It includes both formal and informal logic. Formal logic is the study of deductively valid inferences or logical truths. It examines how conclusions follow from premises based on the structure of arguments alone, independent of their topic and content. Informal logic is associated with informal fallacies, critical thinking, and argumentation theory. Informal logic examines arguments expressed in natural language whereas formal logic uses formal language. When used as a countable noun, the term "a logic" refers to a specific logical formal system that articulates a proof system. Logic plays a central role in many fields, such as philosophy, mathematics, computer science, and linguistics.

References

  1. Goodman, Michael F. First Logic. Lanham: U of America, 1993. Web.