Double counting (fallacy)

Last updated

Double counting is a fallacy in reasoning.

An example of double counting is shown starting with the question: What is the probability of seeing at least one 5 when throwing a pair of dice? An erroneous argument goes as follows: The first die shows a 5 with probability 1/6, and the second die shows a 5 with probability 1/6; therefore, the probability of seeing a 5 on at least one of the dice is 1/6 + 1/6 = 1/3 = 12/36. However, the correct answer is 11/36, because the erroneous argument has double-counted the event where both dice show 5s.

Double counting can be generalized as the fallacy in which, when counting events or occurrences in probability or in other areas, a solution counts events two or more times, resulting in an erroneous number of events or occurrences which is higher than the true result. This results in the calculated sum of probabilities for all possible outcomes to be higher than 100%, which is impossible.

In mathematical terms, the previous example calculated the probability of P(A or B) as P(A)+P(B). However, by the inclusion-exclusion principle, P(A or B) = P(A) + P(B) - P(A and B), one compensates for double counting by subtracting those objects which were double counted.

Another example is made in the joke where a man explains to his boss why he has to be an hour late to work every day:

All of the numbers are correct, but the man is counting them incorrectly. Sleeping, bathing and eating are also parts of the weekends, holidays and vacation times that are being included, making these hours double counted. Also, vacation time is calculated for 14 days rather than 10 working days, double counting two weekends.

Further reading


Related Research Articles

The erlang is a dimensionless unit that is used in telephony as a measure of offered load or carried load on service-providing elements such as telephone circuits or telephone switching equipment. A single cord circuit has the capacity to be used for 60 minutes in one hour. Full utilization of that capacity, 60 minutes of traffic, constitutes 1 erlang.

The gambler's fallacy, also known as the Monte Carlo fallacy or the fallacy of the maturity of chances, is the incorrect belief that, if an event has occurred more frequently than expected, it is less likely to happen again in the future. The fallacy is commonly associated with gambling, where it may be believed, for example, that the next dice roll is more than usually likely to be six because there have recently been fewer than the expected number of sixes.

<span class="mw-page-title-main">False dilemma</span> Informal fallacy involving falsely limited alternatives

A false dilemma, also referred to as false dichotomy or false binary, is an informal fallacy based on a premise that erroneously limits what options are available. The source of the fallacy lies not in an invalid form of inference but in a false premise. This premise has the form of a disjunctive claim: it asserts that one among a number of alternatives must be true. This disjunction is problematic because it oversimplifies the choice by excluding viable alternatives, presenting the viewer with only two absolute choices when in fact, there could be many.

A leap year is a calendar year that contains an additional day compared to a common year. The 366th day is added to keep the calendar year synchronized with the astronomical year or seasonal year. Because astronomical events and seasons do not repeat in a whole number of days, calendars that have a constant number of days in each year will unavoidably drift over time with respect to the event that the year is supposed to track, such as seasons. By inserting ("intercalating") an additional day, a leap day, or month, a leap month, into some years, the drift between a civilization's dating system and the physical properties of the Solar System can be corrected.

<span class="mw-page-title-main">Probability theory</span> Branch of mathematics concerning probability

Probability theory or probability calculus is the branch of mathematics concerned with probability. Although there are several different probability interpretations, probability theory treats the concept in a rigorous mathematical manner by expressing it through a set of axioms. Typically these axioms formalise probability in terms of a probability space, which assigns a measure taking values between 0 and 1, termed the probability measure, to a set of outcomes called the sample space. Any specified subset of the sample space is called an event.

<span class="mw-page-title-main">Fallacy</span> Argument that uses faulty reasoning

A fallacy, is the use of invalid or otherwise faulty reasoning in the construction of an argument that may appear to be well-reasoned if unnoticed. The term was introduced in the Western intellectual tradition by the Aristotelian De Sophisticis Elenchis.

<span class="mw-page-title-main">Birthday problem</span> Mathematical problem

In probability theory, the birthday problem asks for the probability that, in a set of n randomly chosen people, at least two will share a birthday. The birthday paradox refers to the counterintuitive fact that only 23 people are needed for that probability to exceed 50%.

The inverse gambler's fallacy, named by philosopher Ian Hacking, is a formal fallacy of Bayesian inference which is an inverse of the better known gambler's fallacy. It is the fallacy of concluding, on the basis of an unlikely outcome of a random process, that the process is likely to have occurred many times before. For example, if one observes a pair of fair dice being rolled and turning up double sixes, it is wrong to suppose that this lends any support to the hypothesis that the dice have been rolled many times before. We can see this from the Bayesian update rule: letting U denote the unlikely outcome of the random process and M the proposition that the process has occurred many times before, we have

In probability theory, odds provide a measure of the likelihood of a particular outcome. They are calculated as the ratio of the number of events that produce that outcome to the number that do not. Odds are commonly used in gambling and statistics.

The representativeness heuristic is used when making judgments about the probability of an event being representional in character and essence of known prototypical event. It is one of a group of heuristics proposed by psychologists Amos Tversky and Daniel Kahneman in the early 1970s as "the degree to which [an event] (i) is similar in essential characteristics to its parent population, and (ii) reflects the salient features of the process by which it is generated". The representativeness heuristic works by comparing an event to a prototype or stereotype that we already have in mind. For example, if we see a person who is dressed in eccentric clothes and reading a poetry book, we might be more likely to think that they are a poet than an accountant. This is because the person's appearance and behavior are more representative of the stereotype of a poet than an accountant.

In information theory, the information content, self-information, surprisal, or Shannon information is a basic quantity derived from the probability of a particular event occurring from a random variable. It can be thought of as an alternative way of expressing probability, much like odds or log-odds, but which has particular mathematical advantages in the setting of information theory.

<span class="mw-page-title-main">Informal fallacy</span> Form of incorrect argument in natural language

Informal fallacies are a type of incorrect argument in natural language. The source of the error is not just due to the form of the argument, as is the case for formal fallacies, but can also be due to their content and context. Fallacies, despite being incorrect, usually appear to be correct and thereby can seduce people into accepting and using them. These misleading appearances are often connected to various aspects of natural language, such as ambiguous or vague expressions, or the assumption of implicit premises instead of making them explicit.

This glossary of statistics and probability is a list of definitions of terms and concepts used in the mathematical sciences of statistics and probability, their sub-disciplines, and related fields. For additional related terms, see Glossary of mathematics and Glossary of experimental design.

<span class="mw-page-title-main">Sleeping Beauty problem</span> Mathematical problem

The Sleeping Beauty problem, also known as the Sleeping Beauty paradox, is a puzzle in decision theory in which an ideally rational epistemic agent is told they will be awoken from sleep either once or twice according to the toss of a coin. Each time they will have no memory of whether they have been awoken before, and are asked what their degree of belief that the outcome of the coin toss is Heads ought to be when they are first awakened.

The mathematics of gambling is a collection of probability applications encountered in games of chance and can get included in game theory. From a mathematical point of view, the games of chance are experiments generating various types of aleatory events, and it is possible to calculate by using the properties of probability on a finite space of possibilities.

<span class="mw-page-title-main">Conditional probability</span> Probability of an event occurring, given that another event has already occurred

In probability theory, conditional probability is a measure of the probability of an event occurring, given that another event (by assumption, presumption, assertion or evidence) is already known to have occurred. This particular method relies on event B occurring with some sort of relationship with another event A. In this event, the event B can be analyzed by a conditional probability with respect to A. If the event of interest is A and the event B is known or assumed to have occurred, "the conditional probability of A given B", or "the probability of A under the condition B", is usually written as P(A|B) or occasionally PB(A). This can also be understood as the fraction of probability B that intersects with A, or the ratio of the probabilities of both events happening to the "given" one happening (how many times A occurs rather than not assuming B has occurred): .

In probability theory and statistics, a collection of random variables is independent and identically distributed if each random variable has the same probability distribution as the others and all are mutually independent. This property is usually abbreviated as i.i.d., iid, or IID. IID was first defined in statistics and finds application in different fields such as data mining and signal processing.

The shift plan, rota or roster is the central component of a shift schedule in shift work. The schedule includes considerations of shift overlap, shift change times and alignment with the clock, vacation, training, shift differentials, holidays, etc. The shift plan determines the sequence of work (W) and free (F) days within a shift system.

Loss of load in an electrical grid is a term used to describe the situation when the available generation capacity is less than the system load. Multiple probabilistic reliability indices for the generation systems are using loss of load in their definitions, with the more popular being Loss of Load Probability (LOLP) that characterizes a probability of a loss of load occurring within a year. Loss of load events are calculated before the mitigating actions are taken, so a loss of load does not necessarily cause a blackout.