Inductive bias

Last updated

The inductive bias (also known as learning bias) of a learning algorithm is the set of assumptions that the learner uses to predict outputs of given inputs that it has not encountered. [1] Inductive bias is anything which makes the algorithm learn one pattern instead of another pattern (e.g., step-functions in decision trees instead of continuous functions in linear regression models). Learning involves searching a space of solutions for a solution that provides a good explanation of the data. However, in many cases, there may be multiple equally appropriate solutions. [2] An inductive bias allows a learning algorithm to prioritize one solution (or interpretation) over another, independently of the observed data. [3]

Contents

In machine learning, the aim is to construct algorithms that are able to learn to predict a certain target output. To achieve this, the learning algorithm is presented some training examples that demonstrate the intended relation of input and output values. Then the learner is supposed to approximate the correct output, even for examples that have not been shown during training. Without any additional assumptions, this problem cannot be solved since unseen situations might have an arbitrary output value. The kind of necessary assumptions about the nature of the target function are subsumed in the phrase inductive bias. [1] [4]

A classical example of an inductive bias is Occam's razor, assuming that the simplest consistent hypothesis about the target function is actually the best. Here, consistent means that the hypothesis of the learner yields correct outputs for all of the examples that have been given to the algorithm.

Approaches to a more formal definition of inductive bias are based on mathematical logic. Here, the inductive bias is a logical formula that, together with the training data, logically entails the hypothesis generated by the learner. However, this strict formalism fails in many practical cases in which the inductive bias can only be given as a rough description (e.g., in the case of artificial neural networks), or not at all.

Types

The following is a list of common inductive biases in machine learning algorithms.

Shift of bias

Although most learning algorithms have a static bias, some algorithms are designed to shift their bias as they acquire more data. [5] This does not avoid bias, since the bias shifting process itself must have a bias.

See also

Related Research Articles

<span class="mw-page-title-main">Supervised learning</span> Paradigm in machine learning

Supervised learning (SL) is a paradigm in machine learning where input objects and a desired output value train a model. The training data is processed, building a function that maps new data to expected output values. An optimal scenario will allow for the algorithm to correctly determine output values for unseen instances. This requires the learning algorithm to generalize from the training data to unseen situations in a "reasonable" way. This statistical quality of an algorithm is measured through the so-called generalization error.

<span class="mw-page-title-main">Inductive logic programming</span>

Inductive logic programming (ILP) is a subfield of symbolic artificial intelligence which uses logic programming as a uniform representation for examples, background knowledge and hypotheses. The term "inductive" here refers to philosophical rather than mathematical induction. Given an encoding of the known background knowledge and a set of examples represented as a logical database of facts, an ILP system will derive a hypothesised logic program which entails all the positive and none of the negative examples.

In machine learning, support vector machines are supervised max-margin models with associated learning algorithms that analyze data for classification and regression analysis. Developed at AT&T Bell Laboratories, SVMs are one of the most studied models, being based on statistical learning frameworks of VC theory proposed by Vapnik and Chervonenkis (1974).

In machine learning (ML), boosting is an ensemble metaheuristic for primarily reducing bias. It can also improve the stability and accuracy of ML classification and regression algorithms. Hence, it is prevalent in supervised learning for converting weak learners to strong learners.

<span class="mw-page-title-main">Overfitting</span> Flaw in mathematical modelling

In mathematical modeling, overfitting is "the production of an analysis that corresponds too closely or exactly to a particular set of data, and may therefore fail to fit to additional data or predict future observations reliably". An overfitted model is a mathematical model that contains more parameters than can be justified by the data. In a mathematical sense, these parameters represent the degree of a polynomial. The essence of overfitting is to have unknowingly extracted some of the residual variation as if that variation represented underlying model structure.

In machine learning, early stopping is a form of regularization used to avoid overfitting when training a model with an iterative method, such as gradient descent. Such methods update the model to make it better fit the training data with each iteration. Up to a point, this improves the model's performance on data outside of the training set. Past that point, however, improving the model's fit to the training data comes at the expense of increased generalization error. Early stopping rules provide guidance as to how many iterations can be run before the learner begins to over-fit. Early stopping rules have been employed in many different machine learning methods, with varying amounts of theoretical foundation.

Machine learning (ML) is a field of study in artificial intelligence concerned with the development and study of statistical algorithms that can learn from data and generalize to unseen data, and thus perform tasks without explicit instructions. Advances in the field of deep learning have allowed neural networks to surpass many previous approaches in performance.

Minimum Description Length (MDL) is a model selection principle where the shortest description of the data is the best model. MDL methods learn through a data compression perspective and are sometimes described as mathematical applications of Occam's razor. The MDL principle can be extended to other forms of inductive inference and learning, for example to estimation and sequential prediction, without explicitly identifying a single model of the data.

In mathematical folklore, the "no free lunch" (NFL) theorem of David Wolpert and William Macready, alludes to the saying "no such thing as a free lunch", that is, there are no easy shortcuts to success. It appeared in the 1997 "No Free Lunch Theorems for Optimization". Wolpert had previously derived no free lunch theorems for machine learning.

<span class="mw-page-title-main">No free lunch in search and optimization</span> Average solution cost is the same with any method

In computational complexity and optimization the no free lunch theorem is a result that states that for certain types of mathematical problems, the computational cost of finding a solution, averaged over all problems in the class, is the same for any solution method. The name alludes to the saying "no such thing as a free lunch", that is, no method offers a "short cut". This is under the assumption that the search space is a probability density function. It does not apply to the case where the search space has underlying structure that can be exploited more efficiently than random search or even has closed-form solutions that can be determined without search at all. For such probabilistic assumptions, the outputs of all procedures solving a particular type of problem are statistically identical. A colourful way of describing such a circumstance, introduced by David Wolpert and William G. Macready in connection with the problems of search and optimization, is to say that there is no free lunch. Wolpert had previously derived no free lunch theorems for machine learning. Before Wolpert's article was published, Cullen Schaffer independently proved a restricted version of one of Wolpert's theorems and used it to critique the current state of machine learning research on the problem of induction.

Empirical risk minimization is a principle in statistical learning theory which defines a family of learning algorithms based on evaluating performance over a known and fixed dataset. The core idea is based on an application of the law of large numbers; more specifically, we cannot know exactly how well a predictive algorithm will work in practice because we do not know the true distribution of the data, but we can instead estimate and optimize the performance of the algorithm on a known set of training data. The performance over the known set of training data is referred to as the "empirical risk".

In machine learning, a common task is the study and construction of algorithms that can learn from and make predictions on data. Such algorithms function by making data-driven predictions or decisions, through building a mathematical model from input data. These input data used to build the model are usually divided into multiple data sets. In particular, three data sets are commonly used in different stages of the creation of the model: training, validation, and test sets.

For supervised learning applications in machine learning and statistical learning theory, generalization error is a measure of how accurately an algorithm is able to predict outcomes for previously unseen data. As learning algorithms are evaluated on finite samples, the evaluation of a learning algorithm may be sensitive to sampling error. As a result, measurements of prediction error on the current data may not provide much information about the algorithm's predictive ability on new, unseen data. The generalization error can be minimized by avoiding overfitting in the learning algorithm. The performance of machine learning algorithms is commonly visualized by learning curve plots that show estimates of the generalization error throughout the learning process.

Meta-learning is a subfield of machine learning where automatic learning algorithms are applied to metadata about machine learning experiments. As of 2017, the term had not found a standard interpretation, however the main goal is to use such metadata to understand how automatic learning can become flexible in solving learning problems, hence to improve the performance of existing learning algorithms or to learn (induce) the learning algorithm itself, hence the alternative term learning to learn.

<span class="mw-page-title-main">Version space learning</span>

Version space learning is a logical approach to machine learning, specifically binary classification. Version space learning algorithms search a predefined space of hypotheses, viewed as a set of logical sentences. Formally, the hypothesis space is a disjunction

In machine learning and statistical classification, multiclass classification or multinomial classification is the problem of classifying instances into one of three or more classes. For example, deciding on whether an image is showing a banana, an orange, or an apple is a multiclass classification problem, with three possible classes, while deciding on whether an image contains an apple or not is a binary classification problem.

Stability, also known as algorithmic stability, is a notion in computational learning theory of how a machine learning algorithm output is changed with small perturbations to its inputs. A stable learning algorithm is one for which the prediction does not change much when the training data is modified slightly. For instance, consider a machine learning algorithm that is being trained to recognize handwritten letters of the alphabet, using 1000 examples of handwritten letters and their labels as a training set. One way to modify this training set is to leave out an example, so that only 999 examples of handwritten letters and their labels are available. A stable learning algorithm would produce a similar classifier with both the 1000-element and 999-element training sets.

Inductive programming (IP) is a special area of automatic programming, covering research from artificial intelligence and programming, which addresses learning of typically declarative and often recursive programs from incomplete specifications, such as input/output examples or constraints.

The following outline is provided as an overview of, and topical guide to, machine learning:

In machine learning, hyperparameter optimization or tuning is the problem of choosing a set of optimal hyperparameters for a learning algorithm. A hyperparameter is a parameter whose value is used to control the learning process, which must be configured before the process starts.

References

  1. 1 2 Mitchell, T. M. (1980), The need for biases in learning generalizations, CBM-TR 5-110, New Brunswick, New Jersey, USA: Rutgers University, CiteSeerX   10.1.1.19.5466
  2. Goodman, Nelson (1955). "The new riddle of induction". Fact, Fiction, and Forecast. Harvard University Press. pp. 59–83. ISBN   978-0-674-29071-6.{{cite book}}: CS1 maint: date and year (link)
  3. Mitchell, Tom M (1980). "The need for biases in learning generalizations" (PDF). Rutgers University Technical Report CBM-TR-117: 184–191.
  4. DesJardins, M.; Gordon, D. F. (1995), "Evaluation and selection of biases in machine learning", Machine Learning, 20 (1–2): 5–22, doi:10.1007/BF00993472
  5. Utgoff, P. E. (1984), Shift of bias for inductive concept learning, New Brunswick, New Jersey, USA: Doctoral dissertation, Department of Computer Science, Rutgers University, ISBN   9780934613002