No free lunch theorem

Last updated

In mathematical folklore, the "no free lunch" (NFL) theorem (sometimes pluralized) of David Wolpert and William Macready, alludes to the saying "no such thing as a free lunch", that is, there are no easy shortcuts to success. It appeared in the 1997 "No Free Lunch Theorems for Optimization". [1] Wolpert had previously derived no free lunch theorems for machine learning (statistical inference). [2]

Contents

In 2005, Wolpert and Macready themselves indicated that the first theorem in their paper "state[s] that any two optimization algorithms are equivalent when their performance is averaged across all possible problems". [3]

The "no free lunch" (NFL) theorem is an easily stated and easily understood consequence of theorems Wolpert and Macready actually prove. It is objectively weaker than the proven theorems, and thus does not encapsulate them. Various investigators have extended the work of Wolpert and Macready substantively. In terms of how the NFL theorem is used in the context of the research area, the no free lunch in search and optimization is a field that is dedicated for purposes of mathematically analyzing data for statistical identity, particularly search [4] and optimization. [1]

While some scholars argue that NFL conveys important insight, others argue that NFL is of little relevance to machine learning research. [5] [6] [7]

Example

Posit a toy universe that exists for exactly two days and on each day contains exactly one object: a square or a triangle. The universe has exactly four possible histories:

  1. (square, triangle): the universe contains a square on day 1, and a triangle on day 2
  2. (square, square)
  3. (triangle, triangle)
  4. (triangle, square)

Any prediction strategy that succeeds for history #2, by predicting a square on day 2 if there is a square on day 1, will fail on history #1, and vice versa. If all histories are equally likely, then any prediction strategy will score the same, with the same accuracy rate of 0.5. [8]

Origin

Wolpert and Macready give two NFL theorems that are closely related to the folkloric theorem. In their paper, they state:

We have dubbed the associated results NFL theorems because they demonstrate that if an algorithm performs well on a certain class of problems then it necessarily pays for that with degraded performance on the set of all remaining problems. [1]

The first theorem hypothesizes objective functions that do not change while optimization is in progress, and the second hypothesizes objective functions that may change. [1]

Theorem  For any algorithms a1 and a2, at iteration step m where denotes the ordered set of size of the cost values associated to input values , is the function being optimized and is the conditional probability of obtaining a given sequence of cost values from algorithm run times on function .

The theorem can be equivalently formulated as follows:

Theorem  Given a finite set and a finite set of real numbers, assume that is chosen at random according to uniform distribution on the set of all possible functions from to . For the problem of optimizing over the set , then no algorithm performs better than blind search.

Here, blind search means that at each step of the algorithm, the element is chosen at random with uniform probability distribution from the elements of that have not been chosen previously.

In essence, this says that when all functions f are equally likely, the probability of observing an arbitrary sequence of m values in the course of optimization does not depend upon the algorithm. In the analytic framework of Wolpert and Macready, performance is a function of the sequence of observed values (and not e.g. of wall-clock time), so it follows easily that all algorithms have identically distributed performance when objective functions are drawn uniformly at random, and also that all algorithms have identical mean performance. But identical mean performance of all algorithms does not imply Theorem 1, and thus the folkloric theorem is not equivalent to the original theorem.

Theorem 2 establishes a similar, but "more subtle", NFL result for time-varying objective functions. [1]

Motivation

The NFL theorems were explicitly not motivated by the question of what can be inferred (in the case of NFL for machine learning) or found (in the case of NFL for search) when the "environment is uniform random". Rather uniform randomness was used as a tool, to compare the number of environments for which algorithm A outperforms algorithm B to the number of environments for which B outperforms A. NFL tells us that (appropriately weighted)[ clarification needed ] there are just as many environments in both of those sets.

This is true for many definitions of what precisely an "environment" is. In particular, there are just as many prior distributions (appropriately weighted) in which learning algorithm A beats B (on average) as vice versa.[ citation needed ] This statement about sets of priors is what is most important about NFL, not the fact that any two algorithms perform equally for the single, specific prior distribution that assigns equal probability to all environments.

While the NFL is important to understand the fundamental limitation for a set of problems, it does not state anything about each particular instance of a problem that can arise in practice. That is, the NFL states what is contained in its mathematical statements and it is nothing more than that. For example, it applies to the situations where the algorithm is fixed a priori and a worst-case problem for the fixed algorithm is chosen a posteriori. Therefore, if we have a "good" problem in practice or if we can choose a "good" learning algorithm for a given particular problem instance, then the NFL does not mention any limitation about this particular problem instance. Though the NFL might seem contradictory to results from other papers suggesting generalization of learning algorithms or search heuristics, it is important to understand the difference between the exact mathematical logic of the NFL and its intuitive interpretation. [9]

Implications

To illustrate one of the counter-intuitive implications of NFL, suppose we fix two supervised learning algorithms, C and D. We then sample a target function f to produce a set of input-output pairs, d. The question is how should we choose whether to train C or D on d, in order to make predictions for what output would be associated with a point lying outside of d.

It is common in almost all of science and statistics to answer this question – to choose between C and D – by running cross-validation on d with those two algorithms. In other words, to decide whether to generalize from d with either C or D, we see which of them has better out-of-sample performance when tested within d.

Since C and D are fixed, this use of cross-validation to choose between them is itself an algorithm, i.e., a way of generalizing from an arbitrary dataset. Call this algorithm A. (Arguably, A is a simplified model of the scientific method itself.)

We could also use anti-cross-validation to make our choice. In other words, we could choose between C and D based on which has worse out-of-sample performance within d. Again, since C and D are fixed, this use of anti-cross-validation is itself an algorithm. Call that algorithm B.

NFL tells us (loosely speaking) that B must beat A on just as many target functions (and associated datasets d) as A beats B. In this very specific sense, the scientific method will lose to the "anti" scientific method just as readily as it wins. [10]

NFL only applies if the target function is chosen from a uniform distribution of all possible functions. If this is not the case, and certain target functions are more likely to be chosen than others, then A may perform better than B overall. The contribution of NFL is that it tells us that choosing an appropriate algorithm requires making assumptions about the kinds of target functions the algorithm is being used for. With no assumptions, no "meta-algorithm", such as the scientific method, performs better than random choice.

While some scholars argue that NFL conveys important insight, others argue that NFL is of little relevance to machine learning research. [5] [6] [7] If Occam's razor is correct, for example if sequences of lower Kolmogorov complexity are more probable than sequences of higher complexity, then (as is observed in real life) some algorithms, such as cross-validation, perform better on average on practical problems (when compared with random choice or with anti-cross-validation). [11]

However, there are major formal challenges in using arguments based on Kolmogorov complexity to establish properties of the real world, since it is uncomputable, and undefined up to an arbitrary additive constant. Partly in recognition of these challenges, it has recently been argued that there are ways to circumvent the no free lunch theorems without invoking Turing machines, by using "meta-induction". [12] [13] Moreover, the Kolmogorov complexity of machine learning models can be upper bounded through compressions of their data labeling, and it is possible to produce non-vacuous cross-domain generalization bounds via Kolmogorov complexity. [7]

See also

Notes

  1. 1 2 3 4 5 Wolpert, D. H.; Macready, W. G. (1997). "No Free Lunch Theorems for Optimization". IEEE Transactions on Evolutionary Computation. 1: 67–82. CiteSeerX   10.1.1.138.6606 . doi:10.1109/4235.585893. S2CID   5553697.
  2. Wolpert, David (1996), "The Lack of A Priori Distinctions between Learning Algorithms", Neural Computation, pp. 1341–1390.
  3. Wolpert, D.H.; Macready, W.G. (December 2005). "Coevolutionary Free Lunches". IEEE Transactions on Evolutionary Computation. 9 (6): 721–735. doi:10.1109/TEVC.2005.856205. hdl: 2060/20050082129 . ISSN   1089-778X.
  4. Wolpert, D. H.; Macready, W. G. (1995). "No Free Lunch Theorems for Search". Technical Report SFI-TR-95-02-010. Santa Fe Institute. S2CID   12890367.
  5. 1 2 Whitley, Darrell; Watson, Jean Paul (2005). Burke, Edmund K.; Kendall, Graham (eds.). Complexity Theory and the No Free Lunch Theorem. Boston, MA: Springer US. pp. 317–339. doi:10.1007/0-387-28356-0_11. ISBN   978-0-387-23460-1.
  6. 1 2 Giraud-Carrier, Christophe, and Foster Provost. "Toward a justification of meta-learning: Is the no free lunch theorem a show-stopper." In Proceedings of the ICML-2005 Workshop on Meta-learning, pp. 12–19. 2005.
  7. 1 2 3 Goldblum, M., Finzi, M., Keefer, R., and Wilson, AG. "The No Free Lunch Theorem, Kolmogorov Complexity, and the Role of Inductive Biases in Machine Learning." In Proceedings of the International Conference on Machine Learning, 2024.
  8. Forster, Malcolm R. (1999). "How do Simple Rules 'Fit to Reality' in a Complex World?". Minds and Machines. 9 (4): 543–564. doi:10.1023/A:1008304819398. S2CID   8802657.
  9. Kawaguchi, K., Kaelbling, L.P, and Bengio, Y.(2017) "Generalization in deep learning", https://arxiv.org/abs/1710.05468
  10. Wolpert, David H. (December 2013). "Ubiquity symposium: Evolutionary computation and the processes of life: what the no free lunch theorems really mean: how to improve search algorithms". Ubiquity. 2013 (December): 1–15. doi:10.1145/2555235.2555237. ISSN   1530-2180.
  11. Lattimore, Tor, and Marcus Hutter. "No free lunch versus Occam’s razor in supervised learning." In Algorithmic Probability and Friends. Bayesian Prediction and Artificial Intelligence, pp. 223–235. Springer, Berlin, Heidelberg, 2013.
  12. Schurz, G. (2019). Hume's Problem Solved: The Optimality of Meta-Induction. MIT Press.
  13. Wolpert, D. H. (2023). "The Implications of the No-Free-Lunch Theorems for Meta-induction". Journal for General Philosophy of Science. 54: 421–432. arXiv: 2103.11956 . doi:10.1007/s10838-022-09609-2.

Related Research Articles

<span class="mw-page-title-main">Kolmogorov complexity</span> Measure of algorithmic complexity

In algorithmic information theory, the Kolmogorov complexity of an object, such as a piece of text, is the length of a shortest computer program that produces the object as output. It is a measure of the computational resources needed to specify the object, and is also known as algorithmic complexity, Solomonoff–Kolmogorov–Chaitin complexity, program-size complexity, descriptive complexity, or algorithmic entropy. It is named after Andrey Kolmogorov, who first published on the subject in 1963 and is a generalization of classical information theory.

In the computer science subfield of algorithmic information theory, a Chaitin constant or halting probability is a real number that, informally speaking, represents the probability that a randomly constructed program will halt. These numbers are formed from a construction due to Gregory Chaitin.

<span class="mw-page-title-main">Entropy (information theory)</span> Expected amount of information needed to specify the output of a stochastic data source

In information theory, the entropy of a random variable quantifies the average level of uncertainty or information associated with the variable's potential states or possible outcomes. This measures the expected amount of information needed to describe the state of the variable, considering the distribution of probabilities across all potential states. Given a discrete random variable , which takes values in the set and is distributed according to , the entropy is where denotes the sum over the variable's possible values. The choice of base for , the logarithm, varies for different applications. Base 2 gives the unit of bits, while base e gives "natural units" nat, and base 10 gives units of "dits", "bans", or "hartleys". An equivalent definition of entropy is the expected value of the self-information of a variable.

<span class="mw-page-title-main">Supervised learning</span> Machine learning paradigm

In machine learning, supervised learning (SL) is a paradigm where a model is trained using input objects and desired output values, which are often human-made labels. The training process builds a function that maps new data to expected output values. An optimal scenario will allow for the algorithm to accurately determine output values for unseen instances. This requires the learning algorithm to generalize from the training data to unseen situations in a "reasonable" way. This statistical quality of an algorithm is measured via a generalization error.

<span class="mw-page-title-main">Algorithmic probability</span>

In algorithmic information theory, algorithmic probability, also known as Solomonoff probability, is a mathematical method of assigning a prior probability to a given observation. It was invented by Ray Solomonoff in the 1960s. It is used in inductive inference theory and analyses of algorithms. In his general theory of inductive inference, Solomonoff uses the method together with Bayes' rule to obtain probabilities of prediction for an algorithm's future outputs.

Solomonoff's theory of inductive inference proves that, under its common sense assumptions (axioms), the best possible scientific model is the shortest algorithm that generates the empirical data under consideration. In addition to the choice of data, other assumptions are that, to avoid the post-hoc fallacy, the programming language must be chosen prior to the data and that the environment being observed is generated by an unknown algorithm. This is also called a theory of induction. Due to its basis in the dynamical character of Algorithmic Information Theory, it encompasses statistical as well as dynamical information criteria for model selection. It was introduced by Ray Solomonoff, based on probability theory and theoretical computer science. In essence, Solomonoff's induction derives the posterior probability of any computable theory, given a sequence of observed data. This posterior probability is derived from Bayes' rule and some universal prior, that is, a prior that assigns a positive probability to any computable theory.

<span class="mw-page-title-main">PP (complexity)</span> Class of problems in computer science

In complexity theory, PP, or PPT is the class of decision problems solvable by a probabilistic Turing machine in polynomial time, with an error probability of less than 1/2 for all instances. The abbreviation PP refers to probabilistic polynomial time. The complexity class was defined by Gill in 1977.

<span class="mw-page-title-main">No free lunch in search and optimization</span> Average solution cost is the same with any method

In computational complexity and optimization the no free lunch theorem is a result that states that for certain types of mathematical problems, the computational cost of finding a solution, averaged over all problems in the class, is the same for any solution method. The name alludes to the saying "no such thing as a free lunch", that is, no method offers a "short cut". This is under the assumption that the search space is a probability density function. It does not apply to the case where the search space has underlying structure that can be exploited more efficiently than random search or even has closed-form solutions that can be determined without search at all. For such probabilistic assumptions, the outputs of all procedures solving a particular type of problem are statistically identical. A colourful way of describing such a circumstance, introduced by David Wolpert and William G. Macready in connection with the problems of search and optimization, is to say that there is no free lunch. Wolpert had previously derived no free lunch theorems for machine learning. Before Wolpert's article was published, Cullen Schaffer independently proved a restricted version of one of Wolpert's theorems and used it to critique the current state of machine learning research on the problem of induction.

Empirical risk minimization is a principle in statistical learning theory which defines a family of learning algorithms based on evaluating performance over a known and fixed dataset. The core idea is based on an application of the law of large numbers; more specifically, we cannot know exactly how well a predictive algorithm will work in practice because we do not know the true distribution of the data, but we can instead estimate and optimize the performance of the algorithm on a known set of training data. The performance over the known set of training data is referred to as the "empirical risk".

<span class="mw-page-title-main">Donsker's theorem</span> Statement in probability theory

In probability theory, Donsker's theorem, named after Monroe D. Donsker, is a functional extension of the central limit theorem for empirical distribution functions. Specifically, the theorem states that an appropriately centered and scaled version of the empirical distribution function converges to a Gaussian process.

A memetic algorithm (MA) in computer science and operations research, is an extension of the traditional genetic algorithm (GA) or more general evolutionary algorithm (EA). It may provide a sufficiently good solution to an optimization problem. It uses a suitable heuristic or local search technique to improve the quality of solutions generated by the EA and to reduce the likelihood of premature convergence.

Intuitively, an algorithmically random sequence is a sequence of binary digits that appears random to any algorithm running on a universal Turing machine. The notion can be applied analogously to sequences on any finite alphabet. Random sequences are key objects of study in algorithmic information theory.

In computational complexity theory, Yao's principle relates the performance of randomized algorithms to deterministic (non-random) algorithms. It states that, for certain classes of algorithms, and certain measures of the performance of the algorithms, the following two quantities are equal:

Group method of data handling (GMDH) is a family of inductive algorithms for computer-based mathematical modeling of multi-parametric datasets that features fully automatic structural and parametric optimization of models.

Kimeme is an open platform for multi-objective optimization and multidisciplinary design optimization. It is intended to be coupled with external numerical software such as computer-aided design (CAD), finite element analysis (FEM), structural analysis and computational fluid dynamics tools. It was developed by Cyber Dyne Srl and provides both a design environment for problem definition and analysis and a software network infrastructure to distribute the computational load.

The sample complexity of a machine learning algorithm represents the number of training-samples that it needs in order to successfully learn a target function.

David Hilton Wolpert is an American physicist and computer scientist. He is a professor at Santa Fe Institute. He is the author of three books, three patents, over one hundred refereed papers, and has received two awards. His name is particularly associated with a theorem in computer science known as "no free lunch".

The distributional learning theory or learning of probability distribution is a framework in computational learning theory. It has been proposed from Michael Kearns, Yishay Mansour, Dana Ron, Ronitt Rubinfeld, Robert Schapire and Linda Sellie in 1994 and it was inspired from the PAC-framework introduced by Leslie Valiant.

In statistical learning theory, a learnable function class is a set of functions for which an algorithm can be devised to asymptotically minimize the expected risk, uniformly over all probability distributions. The concept of learnable classes are closely related to regularization in machine learning, and provides large sample justifications for certain learning algorithms.

In mathematics, the incompressibility method is a proof method like the probabilistic method, the counting method or the pigeonhole principle. To prove that an object in a certain class satisfies a certain property, select an object of that class that is incompressible. If it does not satisfy the property, it can be compressed by computable coding. Since it can be generally proven that almost all objects in a given class are incompressible, the argument demonstrates that almost all objects in the class have the property involved. To select an incompressible object is ineffective, and cannot be done by a computer program. However, a simple counting argument usually shows that almost all objects of a given class can be compressed by only a few bits.