In probability and statistics, the base rate (also known as prior probabilities ) is the class of probabilities unconditional on "featural evidence" (likelihoods).
It is the proportion of individuals in a population who have a certain characteristic or trait. For example, if 1% of the population were medical professionals, and remaining 99% were not medical professionals, then the base rate of medical professionals is 1%. The method for integrating base rates and featural evidence is given by Bayes' rule.
In the sciences, including medicine, the base rate is critical for comparison. [1] In medicine a treatment's effectiveness is clear when the base rate is available. For example, if the control group, using no treatment at all, had their own base rate of 1/20 recoveries within 1 day and a treatment had a 1/100 base rate of recovery within 1 day, we see that the treatment actively decreases the recovery.
The base rate is an important concept in statistical inference, particularly in Bayesian statistics. [2] In Bayesian analysis, the base rate is combined with the observed data to update our belief about the probability of the characteristic or trait of interest. The updated probability is known as the posterior probability and is denoted as P(A|B), where B represents the observed data. For example, suppose we are interested in estimating the prevalence of a disease in a population. The base rate would be the proportion of individuals in the population who have the disease. If we observe a positive test result for a particular individual, we can use Bayesian analysis to update our belief about the probability that the individual has the disease. The updated probability would be a combination of the base rate and the likelihood of the test result given the disease status.
The base rate is also important in decision-making, particularly in situations where the cost of false positives and false negatives are different. [3] For example, in medical testing, a false negative (failing to diagnose a disease) could be much more costly than a false positive (incorrectly diagnosing a disease). In such cases, the base rate can help inform decisions about the appropriate threshold for a positive test result.
Many psychological studies have examined a phenomenon called base-rate neglect or base rate fallacy , in which category base rates are not integrated with presented evidence in a normative manner, [4] although not all evidence is consistent regarding how common this fallacy is. [5] Mathematician Keith Devlin illustrates the risks as a hypothetical type of cancer that afflicts 1% of all people. Suppose a doctor then says there is a test for said cancer that is approximately 80% reliable, and that the test provides a positive result for 100% of people who have cancer, but it also results in a 'false positive' for 20% of people - who do not have cancer. Testing positive may therefore lead people to believe that it is 80% likely that they have cancer. Devlin explains that the odds are instead less than 5%. What is missing from these statistics is the relevant base rate information. The doctor should be asked, "Out of the number of people who test positive (base rate group), how many have cancer?" [6] In assessing the probability that a given individual is a member of a particular class, information other than the base rate needs to be accounted for, especially featural evidence. For example, when a person wearing a white doctor's coat and stethoscope is seen prescribing medication, there is evidence that allows for the conclusion that the probability of this particular individual being a medical professional is considerably more significant than the category base rate of 1%.[ citation needed ]
A statistical hypothesis test is a method of statistical inference used to decide whether the data sufficiently support a particular hypothesis. A statistical hypothesis test typically involves a calculation of a test statistic. Then a decision is made, either by comparing the test statistic to a critical value or equivalently by evaluating a p-value computed from the test statistic. Roughly 100 specialized statistical tests have been defined.
In probability theory and statistics, Bayes' theorem, named after Thomas Bayes, describes the probability of an event, based on prior knowledge of conditions that might be related to the event. For example, if the risk of developing health problems is known to increase with age, Bayes' theorem allows the risk to an individual of a known age to be assessed more accurately by conditioning it relative to their age, rather than assuming that the individual is typical of the population as a whole.
In statistics, the power of a binary hypothesis test is the probability that the test correctly rejects the null hypothesis when a specific alternative hypothesis is true. It is commonly denoted by , and represents the chances of a true positive detection conditional on the actual existence of an effect to detect. Statistical power ranges from 0 to 1, and as the power of a test increases, the probability of making a type II error by wrongly failing to reject the null hypothesis decreases.
The base rate fallacy, also called base rate neglect or base rate bias, is a type of fallacy in which people tend to ignore the base rate in favor of the individuating information. Base rate neglect is a specific form of the more general extension neglect.
In evidence-based medicine, likelihood ratios are used for assessing the value of performing a diagnostic test. They use the sensitivity and specificity of the test to determine whether a test result usefully changes the probability that a condition exists. The first description of the use of likelihood ratios for decision rules was made at a symposium on information theory in 1954. In medicine, likelihood ratios were introduced between 1975 and 1980.
Data dredging is the misuse of data analysis to find patterns in data that can be presented as statistically significant, thus dramatically increasing and understating the risk of false positives. This is done by performing many statistical tests on the data and only reporting those that come back with significant results.
The positive and negative predictive values are the proportions of positive and negative results in statistics and diagnostic tests that are true positive and true negative results, respectively. The PPV and NPV describe the performance of a diagnostic test or other statistical measure. A high result can be interpreted as indicating the accuracy of such a statistic. The PPV and NPV are not intrinsic to the test ; they depend also on the prevalence. Both PPV and NPV can be derived using Bayes' theorem.
Given a population whose members each belong to one of a number of different sets or classes, a classification rule or classifier is a procedure by which the elements of the population set are each predicted to belong to one of the classes. A perfect classification is one for which every element in the population is assigned to the class it really belongs to. The bayes classifier is the classifier which assigns classes optimally based on the known attributes of the elements to be classified.
The use of evidence under Bayes' theorem relates to the probability of finding evidence in relation to the accused, where Bayes' theorem concerns the probability of an event and its inverse. Specifically, it compares the probability of finding particular evidence if the accused were guilty, versus if they were not guilty. An example would be the probability of finding a person's hair at the scene, if guilty, versus if just passing through the scene. Another issue would be finding a person's DNA where they lived, regardless of committing a crime there.
In medicine and statistics, sensitivity and specificity mathematically describe the accuracy of a test that reports the presence or absence of a medical condition. If individuals who have the condition are considered "positive" and those who do not are considered "negative", then sensitivity is a measure of how well a test can identify true positives and specificity is a measure of how well a test can identify true negatives:
In statistical hypothesis testing, a type I error, or a false positive, is the rejection of the null hypothesis when it is actually true. For example, an innocent person may be convicted. A type II error, or a false negative, is the failure to reject a null hypothesis that is actually false. For example: a guilty person may be not convicted.
In statistics, the multiple comparisons, multiplicity or multiple testing problem occurs when one considers a set of statistical inferences simultaneously or estimates a subset of parameters selected based on the observed values.
Medical statistics deals with applications of statistics to medicine and the health sciences, including epidemiology, public health, forensic medicine, and clinical research. Medical statistics has been a recognized branch of statistics in the United Kingdom for more than 40 years, but the term has not come into general use in North America, where the wider term 'biostatistics' is more commonly used. However, "biostatistics" more commonly connotes all applications of statistics to biology. Medical statistics is a subdiscipline of statistics.
It is the science of summarizing, collecting, presenting and interpreting data in medical practice, and using them to estimate the magnitude of associations and test hypotheses. It has a central role in medical investigations. It not only provides a way of organizing information on a wider and more formal basis than relying on the exchange of anecdotes and personal experience, but also takes into account the intrinsic variation inherent in most biological processes.
Frequentist inference is a type of statistical inference based in frequentist probability, which treats “probability” in equivalent terms to “frequency” and draws conclusions from sample-data by means of emphasizing the frequency or proportion of findings in the data. Frequentist inference underlies frequentist statistics, in which the well-established methodologies of statistical hypothesis testing and confidence intervals are founded.
In probability theory, conditional probability is a measure of the probability of an event occurring, given that another event (by assumption, presumption, assertion or evidence) is already known to have occurred. This particular method relies on event A occurring with some sort of relationship with another event B. In this situation, the event A can be analyzed by a conditional probability with respect to B. If the event of interest is A and the event B is known or assumed to have occurred, "the conditional probability of A given B", or "the probability of A under the condition B", is usually written as P(A|B) or occasionally PB(A). This can also be understood as the fraction of probability B that intersects with A, or the ratio of the probabilities of both events happening to the "given" one happening (how many times A occurs rather than not assuming B has occurred): .
Pre-test probability and post-test probability are the probabilities of the presence of a condition before and after a diagnostic test, respectively. Post-test probability, in turn, can be positive or negative, depending on whether the test falls out as a positive test or a negative test, respectively. In some cases, it is used for the probability of developing the condition of interest in the future.
The frequency format hypothesis is the idea that the brain understands and processes information better when presented in frequency formats rather than a numerical or probability format. Thus according to the hypothesis, presenting information as 1 in 5 people rather than 20% leads to better comprehension. The idea was proposed by German scientist Gerd Gigerenzer, after compilation and comparison of data collected between 1976 and 1997.
Misuse of p-values is common in scientific research and scientific education. p-values are often used or interpreted incorrectly; the American Statistical Association states that p-values can indicate how incompatible the data are with a specified statistical model. From a Neyman–Pearson hypothesis testing approach to statistical inferences, the data obtained by comparing the p-value to a significance level will yield one of two results: either the null hypothesis is rejected, or the null hypothesis cannot be rejected at that significance level. From a Fisherian statistical testing approach to statistical inferences, a low p-value means either that the null hypothesis is true and a highly improbable event has occurred or that the null hypothesis is false.
The discipline of forensic epidemiology (FE) is a hybrid of principles and practices common to both forensic medicine and epidemiology. FE is directed at filling the gap between clinical judgment and epidemiologic data for determinations of causality in civil lawsuits and criminal prosecution and defense.
Intuitive statistics, or folk statistics, is the cognitive phenomenon where organisms use data to make generalizations and predictions about the world. This can be a small amount of sample data or training instances, which in turn contribute to inductive inferences about either population-level properties, future data, or both. Inferences can involve revising hypotheses, or beliefs, in light of probabilistic data that inform and motivate future predictions. The informal tendency for cognitive animals to intuitively generate statistical inferences, when formalized with certain axioms of probability theory, constitutes statistics as an academic discipline.