In probability theory and statistics, the characteristic function of any real-valued random variable completely defines its probability distribution. If a random variable admits a probability density function, then the characteristic function is the Fourier transform (with sign reversal) of the probability density function. Thus it provides an alternative route to analytical results compared with working directly with probability density functions or cumulative distribution functions. There are particularly simple results for the characteristic functions of distributions defined by the weighted sums of random variables.
In addition to univariate distributions, characteristic functions can be defined for vector- or matrix-valued random variables, and can also be extended to more generic cases.
The characteristic function always exists when treated as a function of a real-valued argument, unlike the moment-generating function. There are relations between the behavior of the characteristic function of a distribution and properties of the distribution, such as the existence of moments and the existence of a density function.
The characteristic function is a way to describe a random variable X. The characteristic function,
a function of t, determines the behavior and properties of the probability distribution of X. It is equivalent to a probability density function or cumulative distribution function, since knowing one of these functions allows computation of the others, but they provide different insights into the features of the random variable. In particular cases, one or another of these equivalent functions may be easier to represent in terms of simple standard functions.
If a random variable admits a density function, then the characteristic function is its Fourier dual, in the sense that each of them is a Fourier transform of the other. If a random variable has a moment-generating function , then the domain of the characteristic function can be extended to the complex plane, and
Note however that the characteristic function of a distribution is well defined for all real values of t, even when the moment-generating function is not well defined for all real values of t.
The characteristic function approach is particularly useful in analysis of linear combinations of independent random variables: a classical proof of the Central Limit Theorem uses characteristic functions and Lévy's continuity theorem. Another important application is to the theory of the decomposability of random variables.
For a scalar random variable X the characteristic function is defined as the expected value of eitX, where i is the imaginary unit, and t ∈ R is the argument of the characteristic function:
Here FX is the cumulative distribution function of X, fX is the corresponding probability density function, QX(p) is the corresponding inverse cumulative distribution function also called the quantile function, [2] and the integrals are of the Riemann–Stieltjes kind. If a random variable X has a probability density function then the characteristic function is its Fourier transform with sign reversal in the complex exponential [3] [ page needed ]. [4] This convention for the constants appearing in the definition of the characteristic function differs from the usual convention for the Fourier transform. [5] For example, some authors [6] define φX(t) = E[e−2πitX], which is essentially a change of parameter. Other notation may be encountered in the literature: as the characteristic function for a probability measure p, or as the characteristic function corresponding to a density f.
The notion of characteristic functions generalizes to multivariate random variables and more complicated random elements. The argument of the characteristic function will always belong to the continuous dual of the space where the random variable X takes its values. For common cases such definitions are listed below:
Distribution | Characteristic function |
---|---|
Degenerate δa | |
Bernoulli Bern(p) | |
Binomial B(n, p) | |
Negative binomial NB(r, p) | |
Poisson Pois(λ) | |
Uniform (continuous) U(a, b) | |
Uniform (discrete) DU(a, b) | |
Laplace L(μ, b) | |
Logistic Logistic(μ,s) | |
Normal N(μ, σ2) | |
Chi-squared χ2k | |
Noncentral chi-squared | |
Generalized chi-squared | |
Cauchy C(μ, θ) | |
Gamma Γ(k, θ) | |
Exponential Exp(λ) | |
Geometric Gf(p) (number of failures) | |
Geometric Gt(p) (number of trials) | |
Multivariate normal N(μ, Σ) | |
Multivariate Cauchy MultiCauchy(μ, Σ) [10] | |
Oberhettinger (1973) provides extensive tables of characteristic functions.
The bijection stated above between probability distributions and characteristic functions is sequentially continuous. That is, whenever a sequence of distribution functions Fj(x) converges (weakly) to some distribution F(x), the corresponding sequence of characteristic functions φj(t) will also converge, and the limit φ(t) will correspond to the characteristic function of law F. More formally, this is stated as
This theorem can be used to prove the law of large numbers and the central limit theorem.
There is a one-to-one correspondence between cumulative distribution functions and characteristic functions, so it is possible to find one of these functions if we know the other. The formula in the definition of characteristic function allows us to compute φ when we know the distribution function F (or density f). If, on the other hand, we know the characteristic function φ and want to find the corresponding distribution function, then one of the following inversion theorems can be used.
Theorem. If the characteristic function φX of a random variable X is integrable, then FX is absolutely continuous, and therefore X has a probability density function. In the univariate case (i.e. when X is scalar-valued) the density function is given by
In the multivariate case it is
where is the dot product.
The density function is the Radon–Nikodym derivative of the distribution μX with respect to the Lebesgue measure λ:
Theorem (Lévy). [note 1] If φX is characteristic function of distribution function FX, two points a < b are such that {x | a < x < b} is a continuity set of μX (in the univariate case this condition is equivalent to continuity of FX at points a and b), then
Theorem. If a is (possibly) an atom of X (in the univariate case this means a point of discontinuity of FX) then
Theorem (Gil-Pelaez). [16] For a univariate random variable X, if x is a continuity point of FX then
where the imaginary part of a complex number is given by .
And its density function is:
The integral may be not Lebesgue-integrable; for example, when X is the discrete random variable that is always 0, it becomes the Dirichlet integral.
Inversion formulas for multivariate distributions are available. [14] [17]
The set of all characteristic functions is closed under certain operations:
It is well known that any non-decreasing càdlàg function F with limits F(−∞) = 0, F(+∞) = 1 corresponds to a cumulative distribution function of some random variable. There is also interest in finding similar simple criteria for when a given function φ could be the characteristic function of some random variable. The central result here is Bochner’s theorem, although its usefulness is limited because the main condition of the theorem, non-negative definiteness, is very hard to verify. Other theorems also exist, such as Khinchine’s, Mathias’s, or Cramér’s, although their application is just as difficult. Pólya’s theorem, on the other hand, provides a very simple convexity condition which is sufficient but not necessary. Characteristic functions which satisfy this condition are called Pólya-type. [18]
Bochner’s theorem . An arbitrary function φ : Rn → C is the characteristic function of some random variable if and only if φ is positive definite, continuous at the origin, and if φ(0) = 1.
Khinchine’s criterion. A complex-valued, absolutely continuous function φ, with φ(0) = 1, is a characteristic function if and only if it admits the representation
Mathias’ theorem. A real-valued, even, continuous, absolutely integrable function φ, with φ(0) = 1, is a characteristic function if and only if
for n = 0,1,2,..., and all p > 0. Here H2n denotes the Hermite polynomial of degree 2n.
Pólya’s theorem. If is a real-valued, even, continuous function which satisfies the conditions
then φ(t) is the characteristic function of an absolutely continuous distribution symmetric about 0.
Because of the continuity theorem, characteristic functions are used in the most frequently seen proof of the central limit theorem. The main technique involved in making calculations with a characteristic function is recognizing the function as the characteristic function of a particular distribution.
Characteristic functions are particularly useful for dealing with linear functions of independent random variables. For example, if X1, X2, ..., Xn is a sequence of independent (and not necessarily identically distributed) random variables, and
where the ai are constants, then the characteristic function for Sn is given by
In particular, φX+Y(t) = φX(t)φY(t). To see this, write out the definition of characteristic function:
The independence of X and Y is required to establish the equality of the third and fourth expressions.
Another special case of interest for identically distributed random variables is when ai = 1 / n and then Sn is the sample mean. In this case, writing X for the mean,
Characteristic functions can also be used to find moments of a random variable. Provided that the n-th moment exists, the characteristic function can be differentiated n times:
This can be formally written using the derivatives of the Dirac delta function:which allows a formal solution to the moment problem. For example, suppose X has a standard Cauchy distribution. Then φX(t) = e−|t|. This is not differentiable at t = 0, showing that the Cauchy distribution has no expectation. Also, the characteristic function of the sample mean X of n independent observations has characteristic function φX(t) = (e−|t|/n)n = e−|t|, using the result from the previous section. This is the characteristic function of the standard Cauchy distribution: thus, the sample mean has the same distribution as the population itself.
As a further example, suppose X follows a Gaussian distribution i.e. . Then and
A similar calculation shows and is easier to carry out than applying the definition of expectation and using integration by parts to evaluate .
The logarithm of a characteristic function is a cumulant generating function, which is useful for finding cumulants; some instead define the cumulant generating function as the logarithm of the moment-generating function, and call the logarithm of the characteristic function the second cumulant generating function.
Characteristic functions can be used as part of procedures for fitting probability distributions to samples of data. Cases where this provides a practicable option compared to other possibilities include fitting the stable distribution since closed form expressions for the density are not available which makes implementation of maximum likelihood estimation difficult. Estimation procedures are available which match the theoretical characteristic function to the empirical characteristic function, calculated from the data. Paulson et al. (1975) [19] and Heathcote (1977) [20] provide some theoretical background for such an estimation procedure. In addition, Yu (2004) [21] describes applications of empirical characteristic functions to fit time series models where likelihood procedures are impractical. Empirical characteristic functions have also been used by Ansari et al. (2020) [22] and Li et al. (2020) [23] for training generative adversarial networks.
The gamma distribution with scale parameter θ and a shape parameter k has the characteristic function
Now suppose that we have
with X and Y independent from each other, and we wish to know what the distribution of X + Y is. The characteristic functions are
which by independence and the basic properties of characteristic function leads to
This is the characteristic function of the gamma distribution scale parameter θ and shape parameter k1 + k2, and we therefore conclude
The result can be expanded to n independent gamma distributed random variables with the same scale parameter and we get
This section needs expansion. You can help by adding to it. (December 2009) |
As defined above, the argument of the characteristic function is treated as a real number: however, certain aspects of the theory of characteristic functions are advanced by extending the definition into the complex plane by analytic continuation, in cases where this is possible. [24]
Related concepts include the moment-generating function and the probability-generating function. The characteristic function exists for all probability distributions. This is not the case for the moment-generating function.
The characteristic function is closely related to the Fourier transform: the characteristic function of a probability density function p(x) is the complex conjugate of the continuous Fourier transform of p(x) (according to the usual convention; see continuous Fourier transform – other conventions).
where P(t) denotes the continuous Fourier transform of the probability density function p(x). Likewise, p(x) may be recovered from φX(t) through the inverse Fourier transform:
Indeed, even when the random variable does not have a density, the characteristic function may be seen as the Fourier transform of the measure corresponding to the random variable.
Another related concept is the representation of probability distributions as elements of a reproducing kernel Hilbert space via the kernel embedding of distributions. This framework may be viewed as a generalization of the characteristic function under specific choices of the kernel function.
In probability theory, the expected value is a generalization of the weighted average. Informally, the expected value is the mean of the possible values a random variable can take, weighted by the probability of those outcomes. Since it is obtained through arithmetic, the expected value sometimes may not even be included in the sample data set; it is not the value you would "expect" to get in reality.
In probability theory and statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable. The general form of its probability density function is The parameter is the mean or expectation of the distribution, while the parameter is the variance. The standard deviation of the distribution is (sigma). A random variable with a Gaussian distribution is said to be normally distributed, and is called a normal deviate.
In mathematical analysis, the Dirac delta function, also known as the unit impulse, is a generalized function on the real numbers, whose value is zero everywhere except at zero, and whose integral over the entire real line is equal to one. Thus it can be represented heuristically as
In probability theory, the central limit theorem (CLT) states that, under appropriate conditions, the distribution of a normalized version of the sample mean converges to a standard normal distribution. This holds even if the original variables themselves are not normally distributed. There are several versions of the CLT, each applying in the context of different conditions.
In mathematics, the Wiener process is a real-valued continuous-time stochastic process named in honor of American mathematician Norbert Wiener for his investigations on the mathematical properties of the one-dimensional Brownian motion. It is often also called Brownian motion due to its historical connection with the physical process of the same name originally observed by Scottish botanist Robert Brown. It is one of the best known Lévy processes and occurs frequently in pure and applied mathematics, economics, quantitative finance, evolutionary biology, and physics.
In probability theory, the law of large numbers (LLN) is a mathematical law that states that the average of the results obtained from a large number of independent random samples converges to the true value, if it exists. More formally, the LLN states that given a sample of independent and identically distributed values, the sample mean converges to the true mean.
In probability theory and statistics, the moment-generating function of a real-valued random variable is an alternative specification of its probability distribution. Thus, it provides the basis of an alternative route to analytical results compared with working directly with probability density functions or cumulative distribution functions. There are particularly simple results for the moment-generating functions of distributions defined by the weighted sums of random variables. However, not all random variables have moment-generating functions.
In mathematics, Jensen's inequality, named after the Danish mathematician Johan Jensen, relates the value of a convex function of an integral to the integral of the convex function. It was proved by Jensen in 1906, building on an earlier proof of the same inequality for doubly-differentiable functions by Otto Hölder in 1889. Given its generality, the inequality appears in many forms depending on the context, some of which are presented below. In its simplest form the inequality states that the convex transformation of a mean is less than or equal to the mean applied after convex transformation.
In statistics, the Lehmann–Scheffé theorem is a prominent statement, tying together the ideas of completeness, sufficiency, uniqueness, and best unbiased estimation. The theorem states that any estimator that is unbiased for a given unknown quantity and that depends on the data only through a complete, sufficient statistic is the unique best unbiased estimator of that quantity. The Lehmann–Scheffé theorem is named after Erich Leo Lehmann and Henry Scheffé, given their two early papers.
In probability theory, the Borel–Kolmogorov paradox is a paradox relating to conditional probability with respect to an event of probability zero. It is named after Émile Borel and Andrey Kolmogorov.
In probability theory, a Lévy process, named after the French mathematician Paul Lévy, is a stochastic process with independent, stationary increments: it represents the motion of a point whose successive displacements are random, in which displacements in pairwise disjoint time intervals are independent, and displacements in different time intervals of the same length have identical probability distributions. A Lévy process may thus be viewed as the continuous-time analog of a random walk.
In probability theory, a distribution is said to be stable if a linear combination of two independent random variables with this distribution has the same distribution, up to location and scale parameters. A random variable is said to be stable if its distribution is stable. The stable distribution family is also sometimes referred to as the Lévy alpha-stable distribution, after Paul Lévy, the first mathematician to have studied it.
In probability theory and statistics, the Lévy distribution, named after Paul Lévy, is a continuous probability distribution for a non-negative random variable. In spectroscopy, this distribution, with frequency as the dependent variable, is known as a van der Waals profile. It is a special case of the inverse-gamma distribution. It is a stable distribution.
In probability theory, Lévy’s continuity theorem, or Lévy's convergence theorem, named after the French mathematician Paul Lévy, connects convergence in distribution of the sequence of random variables with pointwise convergence of their characteristic functions. This theorem is the basis for one approach to prove the central limit theorem and is one of the major theorems concerning characteristic functions.
In Bayesian statistics, the Jeffreys prior is a non-informative prior distribution for a parameter space. Named after Sir Harold Jeffreys, its density function is proportional to the square root of the determinant of the Fisher information matrix:
In mathematics (specifically multivariable calculus), a multiple integral is a definite integral of a function of several real variables, for instance, f(x, y) or f(x, y, z).
A ratio distribution is a probability distribution constructed as the distribution of the ratio of random variables having two other known distributions. Given two random variables X and Y, the distribution of the random variable Z that is formed as the ratio Z = X/Y is a ratio distribution.
A product distribution is a probability distribution constructed as the distribution of the product of random variables having two other known distributions. Given two statistically independent random variables X and Y, the distribution of the random variable Z that is formed as the product is a product distribution.
In probability theory and directional statistics, a wrapped exponential distribution is a wrapped probability distribution that results from the "wrapping" of the exponential distribution around the unit circle.
The convolution/sum of probability distributions arises in probability theory and statistics as the operation in terms of probability distributions that corresponds to the addition of independent random variables and, by extension, to forming linear combinations of random variables. The operation here is a special case of convolution in the context of probability distributions.