Infinite divisibility (probability)

Last updated

In probability theory, a probability distribution is infinitely divisible if it can be expressed as the probability distribution of the sum of an arbitrary number of independent and identically distributed (i.i.d.) random variables. The characteristic function of any infinitely divisible distribution is then called an infinitely divisible characteristic function. [1]

Contents

More rigorously, the probability distribution F is infinitely divisible if, for every positive integer n, there exist n i.i.d. random variables Xn1, ..., Xnn whose sum Sn = Xn1 + ... + Xnn has the same distribution F.

The concept of infinite divisibility of probability distributions was introduced in 1929 by Bruno de Finetti. This type of decomposition of a distribution is used in probability and statistics to find families of probability distributions that might be natural choices for certain models or applications. Infinitely divisible distributions play an important role in probability theory in the context of limit theorems. [1]

Examples

Examples of continuous distributions that are infinitely divisible are the normal distribution, the Cauchy distribution, the Lévy distribution, and all other members of the stable distribution family, as well as the Gamma distribution, the chi-square distribution, the Wald distribution, the Log-normal distribution [2] and the Student's t-distribution.

Among the discrete distributions, examples are the Poisson distribution and the negative binomial distribution (and hence the geometric distribution also). The one-point distribution whose only possible outcome is 0 is also (trivially) infinitely divisible.

The uniform distribution and the binomial distribution are not infinitely divisible, nor are any other distributions with bounded support (≈ finite-sized domain), other than the one-point distribution mentioned above. [3] The distribution of the reciprocal of a random variable having a Student's t-distribution is also not infinitely divisible. [4]

Any compound Poisson distribution is infinitely divisible; this follows immediately from the definition.

Limit theorem

Infinitely divisible distributions appear in a broad generalization of the central limit theorem: the limit as n + of the sum Sn = Xn1 + ... + Xnn of independent uniformly asymptotically negligible (u.a.n.) random variables within a triangular array

approaches in the weak sense an infinitely divisible distribution. The uniformly asymptotically negligible (u.a.n.) condition is given by

Thus, for example, if the uniform asymptotic negligibility (u.a.n.) condition is satisfied via an appropriate scaling of identically distributed random variables with finite variance, the weak convergence is to the normal distribution in the classical version of the central limit theorem. More generally, if the u.a.n. condition is satisfied via a scaling of identically distributed random variables (with not necessarily finite second moment), then the weak convergence is to a stable distribution. On the other hand, for a triangular array of independent (unscaled) Bernoulli random variables where the u.a.n. condition is satisfied through

the weak convergence of the sum is to the Poisson distribution with mean λ as shown by the familiar proof of the law of small numbers.

Lévy process

Every infinitely divisible probability distribution corresponds in a natural way to a Lévy process. A Lévy process is a stochastic process { Lt : t  0 } with stationary independent increments, where stationary means that for s < t, the probability distribution of LtLs depends only on t  s and where independent increments means that that difference LtLs is independent of the corresponding difference on any interval not overlapping with [s, t], and similarly for any finite number of mutually non-overlapping intervals.

If { Lt : t  0 } is a Lévy process then, for any t  0, the random variable Lt will be infinitely divisible: for any n, we can choose (Xn1, Xn2, ..., Xnn) = (Lt/nL0, L2t/nLt/n, ..., LtL(n−1)t/n). Similarly, LtLs is infinitely divisible for any s < t.

On the other hand, if F is an infinitely divisible distribution, we can construct a Lévy process { Lt : t  0 } from it. For any interval [s, t] where t  s > 0 equals a rational number p/q, we can define LtLs to have the same distribution as Xq1 + Xq2 + ... + Xqp. Irrational values of t  s > 0 are handled via a continuity argument.

Additive process

An additive process (a cadlag, continuous in probability stochastic process with independent increments) has an infinitely divisible distribution for any . Let be its family of infinitely divisible distributions.

satisfies a number of conditions of continuity and monotonicity. Moreover, if a family of infinitely divisible distributions satisfies these continuity and monotonicity conditions, there exists (uniquely in law) an additive process with this distribution. [5]

See also

Footnotes

  1. 1 2 Lukacs, E. (1970) Characteristic Functions, Griffin, London. p. 107
  2. Thorin, Olof (1977). "On the infinite divisibility of the lognormal distribution". Scandinavian Actuarial Journal. 1977 (3): 121–148. doi:10.1080/03461238.1977.10405635. ISSN   0346-1238.
  3. Sato, Ken-iti (1999). Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press. pp. 31, 148. ISBN   978-0-521-55302-5.
  4. Johnson, N.L.; Kotz, S.; Balakrishnan, N. (1995). Continuous Univariate Distributions (2nd ed.). Wiley. volume 2, chapter 28, page 368. ISBN   0-471-58494-0.
  5. Sato, Ken-Ito (1999). Lévy processes and infinitely divisible distributions. Cambridge University Press. pp. 31–68. ISBN   9780521553025.

Related Research Articles

<span class="mw-page-title-main">Cauchy distribution</span> Probability distribution

The Cauchy distribution, named after Augustin Cauchy, is a continuous probability distribution. It is also known, especially among physicists, as the Lorentz distribution, Cauchy–Lorentz distribution, Lorentz(ian) function, or Breit–Wigner distribution. The Cauchy distribution is the distribution of the x-intercept of a ray issuing from with a uniformly distributed angle. It is also the distribution of the ratio of two independent normally distributed random variables with mean zero.

In probability theory, the central limit theorem (CLT) states that, under appropriate conditions, the distribution of a normalized version of the sample mean converges to a standard normal distribution. This holds even if the original variables themselves are not normally distributed. There are several versions of the CLT, each applying in the context of different conditions.

<span class="mw-page-title-main">Stochastic process</span> Collection of random variables

In probability theory and related fields, a stochastic or random process is a mathematical object usually defined as a sequence of random variables in a probability space, where the index of the sequence often has the interpretation of time. Stochastic processes are widely used as mathematical models of systems and phenomena that appear to vary in a random manner. Examples include the growth of a bacterial population, an electrical current fluctuating due to thermal noise, or the movement of a gas molecule. Stochastic processes have applications in many disciplines such as biology, chemistry, ecology, neuroscience, physics, image processing, signal processing, control theory, information theory, computer science, and telecommunications. Furthermore, seemingly random changes in financial markets have motivated the extensive use of stochastic processes in finance.

<span class="mw-page-title-main">Zeta distribution</span>

In probability theory and statistics, the zeta distribution is a discrete probability distribution. If X is a zeta-distributed random variable with parameter s, then the probability that X takes the integer value k is given by the probability mass function

<span class="mw-page-title-main">Law of large numbers</span> Averages of repeated trials converge to the expected value

In probability theory, the law of large numbers (LLN) is a mathematical theorem that states that the average of the results obtained from a large number of independent and identical random samples converges to the true value, if it exists. More formally, the LLN states that given a sample of independent and identically distributed values, the sample mean converges to the true mean.

In probability theory, independent increments are a property of stochastic processes and random measures. Most of the time, a process or random measure has independent increments by definition, which underlines their importance. Some of the stochastic processes that by definition possess independent increments are the Wiener process, all Lévy processes, all additive process and the Poisson point process.

In probability theory, a compound Poisson distribution is the probability distribution of the sum of a number of independent identically-distributed random variables, where the number of terms to be added is itself a Poisson-distributed variable. The result can be either a continuous or a discrete distribution.

In probability theory, a Lévy process, named after the French mathematician Paul Lévy, is a stochastic process with independent, stationary increments: it represents the motion of a point whose successive displacements are random, in which displacements in pairwise disjoint time intervals are independent, and displacements in different time intervals of the same length have identical probability distributions. A Lévy process may thus be viewed as the continuous-time analog of a random walk.

In probability theory, Wald's equation, Wald's identity or Wald's lemma is an important identity that simplifies the calculation of the expected value of the sum of a random number of random quantities. In its simplest form, it relates the expectation of a sum of randomly many finite-mean, independent and identically distributed random variables to the expected number of terms in the sum and the random variables' common expectation under the condition that the number of terms in the sum is independent of the summands.

Renewal theory is the branch of probability theory that generalizes the Poisson process for arbitrary holding times. Instead of exponentially distributed holding times, a renewal process may have any independent and identically distributed (IID) holding times that have finite mean. A renewal-reward process additionally has a random sequence of rewards incurred at each holding time, which are IID but need not be independent of the holding times.

Let be some measure space with -finite measure . The Poisson random measure with intensity measure is a family of random variables defined on some probability space such that

Bootstrapping is any test or metric that uses random sampling with replacement, and falls under the broader class of resampling methods. Bootstrapping assigns measures of accuracy to sample estimates. This technique allows estimation of the sampling distribution of almost any statistic using random sampling methods.

In mathematics, the convolution power is the n-fold iteration of the convolution with itself. Thus if is a function on Euclidean space Rd and is a natural number, then the convolution power is defined by

In queueing theory, a discipline within the mathematical theory of probability, the M/M/∞ queue is a multi-server queueing model where every arrival experiences immediate service and does not wait. In Kendall's notation it describes a system where arrivals are governed by a Poisson process, there are infinitely many servers, so jobs do not need to wait for a server. Each job has an exponentially distributed service time. It is a limit of the M/M/c queue model where the number of servers c becomes very large.

<span class="mw-page-title-main">Poisson point process</span> Type of random mathematical object

In probability, statistics and related fields, a Poisson point process is a type of random mathematical object that consists of points randomly located on a mathematical space with the essential feature that the points occur independently of one another. The Poisson point process is also called a Poisson random measure, Poisson random point field or Poisson point field. When the process is defined on the real line, it is often called simply the Poisson process.

In mathematics, the Poisson boundary is a measure space associated to a random walk. It is an object designed to encode the asymptotic behaviour of the random walk, i.e. how trajectories diverge when the number of steps goes to infinity. Despite being called a boundary it is in general a purely measure-theoretical object and not a boundary in the topological sense. However, in the case where the random walk is on a topological space the Poisson boundary can be related to the Martin boundary, which is an analytic construction yielding a genuine topological boundary. Both boundaries are related to harmonic functions on the space via generalisations of the Poisson formula.

In probability theory, an isotropic measure is any mathematical measure that is invariant under linear isometries. It is a standard simplification and assumption used in probability theory. Generally, it is used in the context of measure theory on -dimensional Euclidean space, for which it can be intuitive to study measures that are unchanged by rotations and translations. An obvious example of such a measure is the standard way of assigning a measure to subsets of n-dimensional Euclidean space: Lebesgue measure.

An additive process, in probability theory, is a cadlag, continuous in probability stochastic process with independent increments. An additive process is the generalization of a Lévy process. An example of an additive process that is not a Lévy process is a Brownian motion with a time-dependent drift. The additive process was introduced by Paul Lévy in 1937.

<span class="mw-page-title-main">Birth process</span> Type of continuous process in probability theory

In probability theory, a birth process or a pure birth process is a special case of a continuous-time Markov process and a generalisation of a Poisson process. It defines a continuous process which takes values in the natural numbers and can only increase by one or remain unchanged. This is a type of birth–death process with no deaths. The rate at which births occur is given by an exponential random variable whose parameter depends only on the current value of the process

Gaussian distribution on a locally compact Abelian group is a distribution on a second countable locally compact Abelian group which satisfies the conditions:

References