Particle decay

Last updated

In particle physics, particle decay is the spontaneous process of one unstable subatomic particle transforming into multiple other particles. The particles created in this process (the final state) must each be less massive than the original, although the total mass of the system must be conserved. A particle is unstable if there is at least one allowed final state that it can decay into. Unstable particles will often have multiple ways of decaying, each with its own associated probability. Decays are mediated by one or several fundamental forces. The particles in the final state may themselves be unstable and subject to further decay.

Contents

The term is typically distinct from radioactive decay, in which an unstable atomic nucleus is transformed into a lighter nucleus accompanied by the emission of particles or radiation, although the two are conceptually similar and are often described using the same terminology.

Probability of survival and particle lifetime

Particle decay is a Poisson process, and hence the probability that a particle survives for time t before decaying (the survival function) is given by an exponential distribution whose time constant depends on the particle's velocity:

where
is the mean lifetime of the particle (when at rest), and
is the Lorentz factor of the particle.

Table of some elementary and composite particle lifetimes

All data are from the Particle Data Group.

TypeNameSymbol Mass (MeV)Mean lifetime
Lepton Electron / Positron [1] 0.511
Muon / Antimuon105.7
Tau lepton / Antitau1777
MesonNeutral Pion 135
Charged Pion 139.6
Baryon Proton / Antiproton [2] [3] 938.2
Neutron / Antineutron 939.6
Boson W boson 80400
Z boson 91000

Decay rate

This section uses natural units, where

The lifetime of a particle is given by the inverse of its decay rate, , the probability per unit time that the particle will decay. For a particle of a mass M and four-momentum P decaying into particles with momenta , the differential decay rate is given by the general formula (expressing Fermi's golden rule)

where
n is the number of particles created by the decay of the original,
S is a combinatorial factor to account for indistinguishable final states (see below),
is the invariant matrix element or amplitude connecting the initial state to the final state (usually calculated using Feynman diagrams),
is an element of the phase space, and
is the four-momentum of particle i.

The factor S is given by

where
m is the number of sets of indistinguishable particles in the final state, and
is the number of particles of type j, so that .

The phase space can be determined from

where
is a four-dimensional Dirac delta function,
is the (three-)momentum of particle i, and
is the energy of particle i.

One may integrate over the phase space to obtain the total decay rate for the specified final state.

If a particle has multiple decay branches or modes with different final states, its full decay rate is obtained by summing the decay rates for all branches. The branching ratio for each mode is given by its decay rate divided by the full decay rate.

Two-body decay

This section uses natural units, where

2-body Particle Decay-CoM.svg
In the Center of Momentum Frame, the decay of a particle into two equal mass particles results in them being emitted with an angle of 180° between them.
2-body Particle Decay-Lab.svg
...while in the Lab Frame the parent particle is probably moving at a speed close to the speed of light so the two emitted particles would come out at angles different from those in the center of momentum frame.

Decay rate

Say a parent particle of mass M decays into two particles, labeled 1 and 2. In the rest frame of the parent particle,

which is obtained by requiring that four-momentum be conserved in the decay, i.e.

Also, in spherical coordinates,

Using the delta function to perform the and integrals in the phase-space for a two-body final state, one finds that the decay rate in the rest frame of the parent particle is

From two different frames

The angle of an emitted particle in the lab frame is related to the angle it has emitted in the center of momentum frame by the equation

Complex mass and decay rate

This section uses natural units, where

The mass of an unstable particle is formally a complex number, with the real part being its mass in the usual sense, and the imaginary part being its decay rate in natural units. When the imaginary part is large compared to the real part, the particle is usually thought of as a resonance more than a particle. This is because in quantum field theory a particle of mass M (a real number) is often exchanged between two other particles when there is not enough energy to create it, if the time to travel between these other particles is short enough, of order 1/M, according to the uncertainty principle. For a particle of mass , the particle can travel for time 1/M, but decays after time of order of . If then the particle usually decays before it completes its travel. [4]

See also

Notes

  1. "Electron lifetime is at least 66,000 yottayears – Physics World". 9 December 2015.
  2. Bajc, Borut; Hisano, Junji; Kuwahara, Takumi; Omura, Yuji (2016). "Threshold corrections to dimension-six proton decay operators in non-minimal SUSY SU (5) GUTs". Nuclear Physics B. 910: 1–22. arXiv: 1603.03568 . Bibcode:2016NuPhB.910....1B. doi:10.1016/j.nuclphysb.2016.06.017. S2CID   119212168.
  3. "How Certain Are We That Protons Don't Decay?". Forbes .
  4. "The Particle Adventures"

Related Research Articles

<span class="mw-page-title-main">Pauli matrices</span> Matrices important in quantum mechanics and the study of spin

In mathematical physics and mathematics, the Pauli matrices are a set of three 2 × 2 complex matrices which are Hermitian, involutory and unitary. Usually indicated by the Greek letter sigma, they are occasionally denoted by tau when used in connection with isospin symmetries.

<span class="mw-page-title-main">Polar coordinate system</span> Coordinates determined by distance and angle

In mathematics, the polar coordinate system is a two-dimensional coordinate system in which each point on a plane is determined by a distance from a reference point and an angle from a reference direction. The reference point is called the pole, and the ray from the pole in the reference direction is the polar axis. The distance from the pole is called the radial coordinate, radial distance or simply radius, and the angle is called the angular coordinate, polar angle, or azimuth. Angles in polar notation are generally expressed in either degrees or radians.

<span class="mw-page-title-main">Kinetic theory of gases</span> Historic physical model of gases

The kinetic theory of gases is a simple, historically significant classical model of the thermodynamic behavior of gases, with which many principal concepts of thermodynamics were established. The model describes a gas as a large number of identical submicroscopic particles, all of which are in constant, rapid, random motion. Their size is assumed to be much smaller than the average distance between the particles. The particles undergo random elastic collisions between themselves and with the enclosing walls of the container. The basic version of the model describes the ideal gas, and considers no other interactions between the particles.

In geometry, a solid angle is a measure of the amount of the field of view from some particular point that a given object covers. That is, it is a measure of how large the object appears to an observer looking from that point. The point from which the object is viewed is called the apex of the solid angle, and the object is said to subtend its solid angle at that point.

In mechanics and geometry, the 3D rotation group, often denoted SO(3), is the group of all rotations about the origin of three-dimensional Euclidean space under the operation of composition.

<span class="mw-page-title-main">Propagator</span> Function in quantum field theory showing probability amplitudes of moving particles

In quantum mechanics and quantum field theory, the propagator is a function that specifies the probability amplitude for a particle to travel from one place to another in a given period of time, or to travel with a certain energy and momentum. In Feynman diagrams, which serve to calculate the rate of collisions in quantum field theory, virtual particles contribute their propagator to the rate of the scattering event described by the respective diagram. These may also be viewed as the inverse of the wave operator appropriate to the particle, and are, therefore, often called (causal) Green's functions.

<span class="mw-page-title-main">Hamilton–Jacobi equation</span> A reformulation of Newtons laws of motion using the calculus of variations

In physics, the Hamilton–Jacobi equation, named after William Rowan Hamilton and Carl Gustav Jacob Jacobi, is an alternative formulation of classical mechanics, equivalent to other formulations such as Newton's laws of motion, Lagrangian mechanics and Hamiltonian mechanics.

In rotordynamics, the rigid rotor is a mechanical model of rotating systems. An arbitrary rigid rotor is a 3-dimensional rigid object, such as a top. To orient such an object in space requires three angles, known as Euler angles. A special rigid rotor is the linear rotor requiring only two angles to describe, for example of a diatomic molecule. More general molecules are 3-dimensional, such as water, ammonia, or methane.

The Kerr–Newman metric is the most general asymptotically flat, stationary solution of the Einstein–Maxwell equations in general relativity that describes the spacetime geometry in the region surrounding an electrically charged, rotating mass. It generalizes the Kerr metric by taking into account the field energy of an electromagnetic field, in addition to describing rotation. It is one of a large number of various different electrovacuum solutions, that is, of solutions to the Einstein–Maxwell equations which account for the field energy of an electromagnetic field. Such solutions do not include any electric charges other than that associated with the gravitational field, and are thus termed vacuum solutions.

In Bayesian probability, the Jeffreys prior, named after Sir Harold Jeffreys, is a non-informative prior distribution for a parameter space; its density function is proportional to the square root of the determinant of the Fisher information matrix:

In particle physics, neutral particle oscillation is the transmutation of a particle with zero electric charge into another neutral particle due to a change of a non-zero internal quantum number, via an interaction that does not conserve that quantum number. Neutral particle oscillations were first investigated in 1954 by Murray Gell-mann and Abraham Pais.

<span class="mw-page-title-main">Routhian mechanics</span> Formulation of classical mechanics

In classical mechanics, Routh's procedure or Routhian mechanics is a hybrid formulation of Lagrangian mechanics and Hamiltonian mechanics developed by Edward John Routh. Correspondingly, the Routhian is the function which replaces both the Lagrangian and Hamiltonian functions. Routhian mechanics is equivalent to Lagrangian mechanics and Hamiltonian mechanics, and introduces no new physics. It offers an alternative way to solve mechanical problems.

The theoretical and experimental justification for the Schrödinger equation motivates the discovery of the Schrödinger equation, the equation that describes the dynamics of nonrelativistic particles. The motivation uses photons, which are relativistic particles with dynamics described by Maxwell's equations, as an analogue for all types of particles.

<span class="mw-page-title-main">Proper acceleration</span> Physical acceleration experienced by an object

In relativity theory, proper acceleration is the physical acceleration experienced by an object. It is thus acceleration relative to a free-fall, or inertial, observer who is momentarily at rest relative to the object being measured. Gravitation therefore does not cause proper acceleration, because the same gravity acts equally on the inertial observer. As a consequence, all inertial observers always have a proper acceleration of zero.

In general relativity, Lense–Thirring precession or the Lense–Thirring effect is a relativistic correction to the precession of a gyroscope near a large rotating mass such as the Earth. It is a gravitomagnetic frame-dragging effect. It is a prediction of general relativity consisting of secular precessions of the longitude of the ascending node and the argument of pericenter of a test particle freely orbiting a central spinning mass endowed with angular momentum .

<span class="mw-page-title-main">Gravitational lensing formalism</span>

In general relativity, a point mass deflects a light ray with impact parameter by an angle approximately equal to

In probability theory and directional statistics, a wrapped probability distribution is a continuous probability distribution that describes data points that lie on a unit n-sphere. In one dimension, a wrapped distribution consists of points on the unit circle. If is a random variate in the interval with probability density function (PDF) , then is a circular variable distributed according to the wrapped distribution and is an angular variable in the interval distributed according to the wrapped distribution .

<span class="mw-page-title-main">Wrapped Cauchy distribution</span>

In probability theory and directional statistics, a wrapped Cauchy distribution is a wrapped probability distribution that results from the "wrapping" of the Cauchy distribution around the unit circle. The Cauchy distribution is sometimes known as a Lorentzian distribution, and the wrapped Cauchy distribution may sometimes be referred to as a wrapped Lorentzian distribution.

In physics, and especially scattering theory, the momentum-transfer cross section is an effective scattering cross section useful for describing the average momentum transferred from a particle when it collides with a target. Essentially, it contains all the information about a scattering process necessary for calculating average momentum transfers but ignores other details about the scattering angle.

In physics, the distorted Schwarzschild metric is the metric of a standard/isolated Schwarzschild spacetime exposed in external fields. In numerical simulation, the Schwarzschild metric can be distorted by almost arbitrary kinds of external energy–momentum distribution. However, in exact analysis, the mature method to distort the standard Schwarzschild metric is restricted to the framework of Weyl metrics.