Arrival theorem

Last updated

In queueing theory, a discipline within the mathematical theory of probability, the arrival theorem [1] (also referred to as the random observer property, ROP or job observer property [2] ) states that "upon arrival at a station, a job observes the system as if in steady state at an arbitrary instant for the system without that job." [3]

Contents

The arrival theorem always holds in open product-form networks with unbounded queues at each node, but it also holds in more general networks. A necessary and sufficient condition for the arrival theorem to be satisfied in product-form networks is given in terms of Palm probabilities in Boucherie & Dijk, 1997. [4] A similar result also holds in some closed networks. Examples of product-form networks where the arrival theorem does not hold include reversible Kingman networks [4] [5] and networks with a delay protocol. [3]

Mitrani offers the intuition that "The state of node i as seen by an incoming job has a different distribution from the state seen by a random observer. For instance, an incoming job can never see all 'k jobs present at node i, because it itself cannot be among the jobs already present." [6]

Theorem for arrivals governed by a Poisson process

For Poisson processes the property is often referred to as the PASTA property (Poisson Arrivals See Time Averages) and states that the probability of the state as seen by an outside random observer is the same as the probability of the state seen by an arriving customer. [7] The property also holds for the case of a doubly stochastic Poisson process where the rate parameter is allowed to vary depending on the state. [8]

Theorem for Jackson networks

In an open Jackson network with m queues, write for the state of the network. Suppose is the equilibrium probability that the network is in state . Then the probability that the network is in state immediately before an arrival to any node is also .

Note that this theorem does not follow from Jackson's theorem, where the steady state in continuous time is considered. Here we are concerned with particular points in time, namely arrival times. [9] This theorem first published by Sevcik and Mitrani in 1981. [10]

Theorem for Gordon–Newell networks

In a closed Gordon–Newell network with m queues, write for the state of the network. For a customer in transit to state , let denote the probability that immediately before arrival the customer 'sees' the state of the system to be

This probability, , is the same as the steady state probability for state for a network of the same type with one customer less. [11] It was published independently by Sevcik and Mitrani, [10] and Reiser and Lavenberg, [12] where the result was used to develop mean value analysis.

Notes

  1. Asmussen, Søren (2003). "Queueing Networks and Insensitivity". Applied Probability and Queues. Stochastic Modelling and Applied Probability. Vol. 51. pp. 114–136. doi:10.1007/0-387-21525-5_4. ISBN   978-0-387-00211-8.
  2. El-Taha, Muhammad (1999). Sample-path Analysis of Queueing Systems . Springer. p.  94. ISBN   0-7923-8210-2.
  3. 1 2 Van Dijk, N. M. (1993). "On the arrival theorem for communication networks". Computer Networks and ISDN Systems. 25 (10): 1135–2013. doi:10.1016/0169-7552(93)90073-D.
  4. 1 2 Boucherie, R. J.; Van Dijk, N. M. (1997). "On the arrivai theorem for product form queueing networks with blocking". Performance Evaluation. 29 (3): 155. doi:10.1016/S0166-5316(96)00045-4.
  5. Kingman, J. F. C. (1969). "Markov Population Processes". Journal of Applied Probability. Applied Probability Trust. 6 (1): 1–18. doi:10.2307/3212273. JSTOR   3212273.
  6. Mitrani, Isi (1987). Modelling of Computer and Communication Systems. CUP. p.  114. ISBN   0521314224.
  7. Wolff, R. W. (1982). "Poisson Arrivals See Time Averages". Operations Research. 30 (2): 223–231. doi:10.1287/opre.30.2.223.
  8. Van Doorn, E. A.; Regterschot, G. J. K. (1988). "Conditional PASTA" (PDF). Operations Research Letters. 7 (5): 229. doi:10.1016/0167-6377(88)90036-3.
  9. Harrison, Peter G.; Patel, Naresh M. (1992). Performance Modelling of Communication Networks and Computer Architectures . Addison-Wesley. p.  228. ISBN   0-201-54419-9.
  10. 1 2 Sevcik, K. C.; Mitrani, I. (1981). "The Distribution of Queuing Network States at Input and Output Instants". Journal of the ACM. 28 (2): 358. doi: 10.1145/322248.322257 .
  11. Breuer, L.; Baum, Dave (2005). "Markovian Queueing Networks". An Introduction to Queueing Theory and Matrix-Analytic Methods . pp.  63–61. doi:10.1007/1-4020-3631-0_5. ISBN   1-4020-3630-2.
  12. Reiser, M.; Lavenberg, S. S. (1980). "Mean-Value Analysis of Closed Multichain Queuing Networks". Journal of the ACM . 27 (2): 313. doi: 10.1145/322186.322195 .

Related Research Articles

In probability theory, the central limit theorem (CLT) establishes that, in many situations, for independent and identically distributed random variables, the sampling distribution of the standardized sample mean tends towards the standard normal distribution even if the original variables themselves are not normally distributed.

<span class="mw-page-title-main">Queueing theory</span> Mathematical study of waiting lines, or queues

Queueing theory is the mathematical study of waiting lines, or queues. A queueing model is constructed so that queue lengths and waiting time can be predicted. Queueing theory is generally considered a branch of operations research because the results are often used when making business decisions about the resources needed to provide a service.

In queueing theory, a discipline within the mathematical theory of probability, a Jackson network is a class of queueing network where the equilibrium distribution is particularly simple to compute as the network has a product-form solution. It was the first significant development in the theory of networks of queues, and generalising and applying the ideas of the theorem to search for similar product-form solutions in other networks has been the subject of much research, including ideas used in the development of the Internet. The networks were first identified by James R. Jackson and his paper was re-printed in the journal Management Science’s ‘Ten Most Influential Titles of Management Sciences First Fifty Years.’

In queueing theory, a discipline within the mathematical theory of probability, a G-network is an open network of G-queues first introduced by Erol Gelenbe as a model for queueing systems with specific control functions, such as traffic re-routing or traffic destruction, as well as a model for neural networks. A G-queue is a network of queues with several types of novel and useful customers:

<span class="mw-page-title-main">M/M/1 queue</span> Queue with Markov (Poisson) arrival process, exponential service time distribution and one server

In queueing theory, a discipline within the mathematical theory of probability, an M/M/1 queue represents the queue length in a system having a single server, where arrivals are determined by a Poisson process and job service times have an exponential distribution. The model name is written in Kendall's notation. The model is the most elementary of queueing models and an attractive object of study as closed-form expressions can be obtained for many metrics of interest in this model. An extension of this model with more than one server is the M/M/c queue.

In queueing theory, a discipline within the mathematical theory of probability, a BCMP network is a class of queueing network for which a product-form equilibrium distribution exists. It is named after the authors of the paper where the network was first described: Baskett, Chandy, Muntz, and Palacios. The theorem is a significant extension to a Jackson network allowing virtually arbitrary customer routing and service time distributions, subject to particular service disciplines.

In probability theory, a product-form solution is a particularly efficient form of solution for determining some metric of a system with distinct sub-components, where the metric for the collection of components can be written as a product of the metric across the different components. Using capital Pi notation a product-form solution has algebraic form

In queueing theory, a discipline within the mathematical theory of probability, the Gordon–Newell theorem is an extension of Jackson's theorem from open queueing networks to closed queueing networks of exponential servers where customers cannot leave the network. Jackson's theorem cannot be applied to closed networks because the queue length at a node in the closed network is limited by the population of the network. The Gordon–Newell theorem calculates the open network solution and then eliminates the infeasible states by renormalizing the probabilities. Calculation of the normalizing constant makes the treatment more awkward as the whole state space must be enumerated. Buzen's algorithm or mean value analysis can be used to calculate the normalizing constant more efficiently.

In queueing theory, a discipline within the mathematical theory of probability, quasireversibility is a property of some queues. The concept was first identified by Richard R. Muntz and further developed by Frank Kelly. Quasireversibility differs from reversibility in that a stronger condition is imposed on arrival rates and a weaker condition is applied on probability fluxes. For example, an M/M/1 queue with state-dependent arrival rates and state-dependent service times is reversible, but not quasireversible.

<span class="mw-page-title-main">Fork–join queue</span> Type of queue

In queueing theory, a discipline within the mathematical theory of probability, a fork–join queue is a queue where incoming jobs are split on arrival for service by numerous servers and joined before departure. The model is often used for parallel computations or systems where products need to be obtained simultaneously from different suppliers. The key quantity of interest in this model is usually the time taken to service a complete job. The model has been described as a "key model for the performance analysis of parallel and distributed systems." Few analytical results exist for fork–join queues, but various approximations are known.

In queueing theory, a discipline within the mathematical theory of probability, mean value analysis (MVA) is a recursive technique for computing expected queue lengths, waiting time at queueing nodes and throughput in equilibrium for a closed separable system of queues. The first approximate techniques were published independently by Schweitzer and Bard, followed later by an exact version by Lavenberg and Reiser published in 1980.

<span class="mw-page-title-main">Poisson distribution</span> Discrete probability distribution

In probability theory and statistics, the Poisson distribution is a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time or space if these events occur with a known constant mean rate and independently of the time since the last event. It is named after French mathematician Siméon Denis Poisson. The Poisson distribution can also be used for the number of events in other specified interval types such as distance, area, or volume. It plays an important role for discrete-stable distributions.

In queueing theory, a discipline within the mathematical theory of probability, the M/M/c queue is a multi-server queueing model. In Kendall's notation it describes a system where arrivals form a single queue and are governed by a Poisson process, there are c servers, and job service times are exponentially distributed. It is a generalisation of the M/M/1 queue which considers only a single server. The model with infinitely many servers is the M/M/∞ queue.

In queueing theory, a discipline within the mathematical theory of probability, traffic equations are equations that describe the mean arrival rate of traffic, allowing the arrival rates at individual nodes to be determined. Mitrani notes "if the network is stable, the traffic equations are valid and can be solved."

In queueing theory, a discipline within the mathematical theory of probability, an M/G/1 queue is a queue model where arrivals are Markovian, service times have a General distribution and there is a single server. The model name is written in Kendall's notation, and is an extension of the M/M/1 queue, where service times must be exponentially distributed. The classic application of the M/G/1 queue is to model performance of a fixed head hard disk.

In queueing theory, a discipline within the mathematical theory of probability, the M/M/∞ queue is a multi-server queueing model where every arrival experiences immediate service and does not wait. In Kendall's notation it describes a system where arrivals are governed by a Poisson process, there are infinitely many servers, so jobs do not need to wait for a server. Each job has an exponentially distributed service time. It is a limit of the M/M/c queue model where the number of servers c becomes very large.

In queueing theory, a discipline within the mathematical theory of probability, a heavy traffic approximation is the matching of a queueing model with a diffusion process under some limiting conditions on the model's parameters. The first such result was published by John Kingman who showed that when the utilisation parameter of an M/M/1 queue is near 1 a scaled version of the queue length process can be accurately approximated by a reflected Brownian motion.

In queueing theory, a discipline within the mathematical theory of probability, an M/D/1 queue represents the queue length in a system having a single server, where arrivals are determined by a Poisson process and job service times are fixed (deterministic). The model name is written in Kendall's notation. Agner Krarup Erlang first published on this model in 1909, starting the subject of queueing theory. An extension of this model with more than one server is the M/D/c queue.

In probability and statistics, a factorial moment measure is a mathematical quantity, function or, more precisely, measure that is defined in relation to mathematical objects known as point processes, which are types of stochastic processes often used as mathematical models of physical phenomena representable as randomly positioned points in time, space or both. Moment measures generalize the idea of factorial moments, which are useful for studying non-negative integer-valued random variables.

<span class="mw-page-title-main">Poisson point process</span> Type of random mathematical object

In probability, statistics and related fields, a Poisson point process is a type of random mathematical object that consists of points randomly located on a mathematical space with the essential feature that the points occur independently of one another. The Poisson point process is also called a Poisson random measure, Poisson random point field or Poisson point field. When the process is defined on the real line, it is often called simply the Poisson process.