Determinantal point process

Last updated

In mathematics, a determinantal point process is a stochastic point process, the probability distribution of which is characterized as a determinant of some function. They are suited for modelling global negative correlations, and for efficient algorithms of sampling, marginalization, conditioning, and other inference tasks. Such processes arise as important tools in random matrix theory, combinatorics, physics, [1] machine learning, [2] and wireless network modeling. [3] [4] [5]

Contents

Introduction

Intuition

Consider some positively charged particles confined in a 1-dimensional box . Due to electrostatic repulsion, the locations of the charged particles are negatively correlated. That is, if one particle is in a small segment , then that makes the other particles less likely to be in the same set. The strength of repulsion between two particles at locations can be characterized by a function .

Formal definition

Let be a locally compact Polish space and be a Radon measure on . In most concrete applications, these are Euclidean space with its Lebesgue measure. A kernel function is a measurable function .

We say that is a determinantal point process on with kernel if it is a simple point process on with a joint intensity or correlation function (which is the density of its factorial moment measure) given by

for every n ≥ 1 and x1, ..., xn ∈ Λ. [6]

Properties

Existence

The following two conditions are necessary and sufficient for the existence of a determinantal random point process with intensities ρk.

Uniqueness

A sufficient condition for the uniqueness of a determinantal random process with joint intensities ρk is for every bounded Borel A ⊆ Λ. [7]

Examples

Gaussian unitary ensemble

The eigenvalues of a random m × m Hermitian matrix drawn from the Gaussian unitary ensemble (GUE) form a determinantal point process on with kernel

where is the th oscillator wave function defined by

and is the th Hermite polynomial. [8]

Airy process

The Airy process has kernel functionwhere is the Airy function. This process arises from rescaled eigenvalues near the spectral edge of the Gaussian Unitary Ensemble. It was introduced in 1992. [9]

Poissonized Plancherel measure

The poissonized Plancherel measure on integer partition (and therefore on Young diagramss) plays an important role in the study of the longest increasing subsequence of a random permutation. The point process corresponding to a random Young diagram, expressed in modified Frobenius coordinates, is a determinantal point process on + 12 with the discrete Bessel kernel, given by:

where For J the Bessel function of the first kind, and θ the mean used in poissonization. [10]

This serves as an example of a well-defined determinantal point process with non-Hermitian kernel (although its restriction to the positive and negative semi-axis is Hermitian). [7]

Uniform spanning trees

Let G be a finite, undirected, connected graph, with edge set E. Define Ie:E  2(E) as follows: first choose some arbitrary set of orientations for the edges E, and for each resulting, oriented edge e, define Ie to be the projection of a unit flow along e onto the subspace of 2(E) spanned by star flows. [11] Then the uniformly random spanning tree of G is a determinantal point process on E, with kernel

. [6]

Related Research Articles

<span class="mw-page-title-main">Divergence</span> Vector operator in vector calculus

In vector calculus, divergence is a vector operator that operates on a vector field, producing a scalar field giving the quantity of the vector field's source at each point. More technically, the divergence represents the volume density of the outward flux of a vector field from an infinitesimal volume around a given point.

In mathematics, and more specifically in linear algebra, a linear map is a mapping between two vector spaces that preserves the operations of vector addition and scalar multiplication. The same names and the same definition are also used for the more general case of modules over a ring; see Module homomorphism.

<span class="mw-page-title-main">Spherical harmonics</span> Special mathematical functions defined on the surface of a sphere

In mathematics and physical science, spherical harmonics are special functions defined on the surface of a sphere. They are often employed in solving partial differential equations in many scientific fields. The table of spherical harmonics contains a list of common spherical harmonics.

In mathematics, a Gaussian function, often simply referred to as a Gaussian, is a function of the base form and with parametric extension for arbitrary real constants a, b and non-zero c. It is named after the mathematician Carl Friedrich Gauss. The graph of a Gaussian is a characteristic symmetric "bell curve" shape. The parameter a is the height of the curve's peak, b is the position of the center of the peak, and c controls the width of the "bell".

<span class="mw-page-title-main">Jensen's inequality</span> Theorem of convex functions

In mathematics, Jensen's inequality, named after the Danish mathematician Johan Jensen, relates the value of a convex function of an integral to the integral of the convex function. It was proved by Jensen in 1906, building on an earlier proof of the same inequality for doubly-differentiable functions by Otto Hölder in 1889. Given its generality, the inequality appears in many forms depending on the context, some of which are presented below. In its simplest form the inequality states that the convex transformation of a mean is less than or equal to the mean applied after convex transformation; it is a simple corollary that the opposite is true of concave transformations.

In probability theory and statistics, a Gaussian process is a stochastic process, such that every finite collection of those random variables has a multivariate normal distribution. The distribution of a Gaussian process is the joint distribution of all those random variables, and as such, it is a distribution over functions with a continuous domain, e.g. time or space.

In probability theory, the Borel–Kolmogorov paradox is a paradox relating to conditional probability with respect to an event of probability zero. It is named after Émile Borel and Andrey Kolmogorov.

In the theory of stochastic processes, the Karhunen–Loève theorem, also known as the Kosambi–Karhunen–Loève theorem states that a stochastic process can be represented as an infinite linear combination of orthogonal functions, analogous to a Fourier series representation of a function on a bounded interval. The transformation is also known as Hotelling transform and eigenvector transform, and is closely related to principal component analysis (PCA) technique widely used in image processing and in data analysis in many fields.

In Bayesian statistics, the Jeffreys prior is a non-informative prior distribution for a parameter space. Named after Sir Harold Jeffreys, its density function is proportional to the square root of the determinant of the Fisher information matrix:

<span class="mw-page-title-main">Tissot's indicatrix</span> Characterization of distortion in map projections

In cartography, a Tissot's indicatrix is a mathematical contrivance presented by French mathematician Nicolas Auguste Tissot in 1859 and 1871 in order to characterize local distortions due to map projection. It is the geometry that results from projecting a circle of infinitesimal radius from a curved geometric model, such as a globe, onto a map. Tissot proved that the resulting diagram is an ellipse whose axes indicate the two principal directions along which scale is maximal and minimal at that point on the map.

<span class="mw-page-title-main">Characteristic function (probability theory)</span> Fourier transform of the probability density function

In probability theory and statistics, the characteristic function of any real-valued random variable completely defines its probability distribution. If a random variable admits a probability density function, then the characteristic function is the Fourier transform of the probability density function. Thus it provides an alternative route to analytical results compared with working directly with probability density functions or cumulative distribution functions. There are particularly simple results for the characteristic functions of distributions defined by the weighted sums of random variables.

<span class="mw-page-title-main">Inverse Gaussian distribution</span> Family of continuous probability distributions

In probability theory, the inverse Gaussian distribution is a two-parameter family of continuous probability distributions with support on (0,∞).

Covariance matrix adaptation evolution strategy (CMA-ES) is a particular kind of strategy for numerical optimization. Evolution strategies (ES) are stochastic, derivative-free methods for numerical optimization of non-linear or non-convex continuous optimization problems. They belong to the class of evolutionary algorithms and evolutionary computation. An evolutionary algorithm is broadly based on the principle of biological evolution, namely the repeated interplay of variation and selection: in each generation (iteration) new individuals are generated by variation of the current parental individuals, usually in a stochastic way. Then, some individuals are selected to become the parents in the next generation based on their fitness or objective function value . Like this, individuals with better and better -values are generated over the generation sequence.

A ratio distribution is a probability distribution constructed as the distribution of the ratio of random variables having two other known distributions. Given two random variables X and Y, the distribution of the random variable Z that is formed as the ratio Z = X/Y is a ratio distribution.

In physics and mathematics, the solid harmonics are solutions of the Laplace equation in spherical polar coordinates, assumed to be (smooth) functions . There are two kinds: the regular solid harmonics, which are well-defined at the origin and the irregular solid harmonics, which are singular at the origin. Both sets of functions play an important role in potential theory, and are obtained by rescaling spherical harmonics appropriately:

In mathematics, the spectral theory of ordinary differential equations is the part of spectral theory concerned with the determination of the spectrum and eigenfunction expansion associated with a linear ordinary differential equation. In his dissertation, Hermann Weyl generalized the classical Sturm–Liouville theory on a finite closed interval to second order differential operators with singularities at the endpoints of the interval, possibly semi-infinite or infinite. Unlike the classical case, the spectrum may no longer consist of just a countable set of eigenvalues, but may also contain a continuous part. In this case the eigenfunction expansion involves an integral over the continuous part with respect to a spectral measure, given by the Titchmarsh–Kodaira formula. The theory was put in its final simplified form for singular differential equations of even degree by Kodaira and others, using von Neumann's spectral theorem. It has had important applications in quantum mechanics, operator theory and harmonic analysis on semisimple Lie groups.

<span class="mw-page-title-main">Poisson distribution</span> Discrete probability distribution

In probability theory and statistics, the Poisson distribution is a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time if these events occur with a known constant mean rate and independently of the time since the last event. It can also be used for the number of events in other types of intervals than time, and in dimension greater than 1.

<span class="mw-page-title-main">Wrapped exponential distribution</span> Probability distribution

In probability theory and directional statistics, a wrapped exponential distribution is a wrapped probability distribution that results from the "wrapping" of the exponential distribution around the unit circle.

In physics and engineering, the radiative heat transfer from one surface to another is the equal to the difference of incoming and outgoing radiation from the first surface. In general, the heat transfer between surfaces is governed by temperature, surface emissivity properties and the geometry of the surfaces. The relation for heat transfer can be written as an integral equation with boundary conditions based upon surface conditions. Kernel functions can be useful in approximating and solving this integral equation.

<span class="mw-page-title-main">Wrapped asymmetric Laplace distribution</span>

In probability theory and directional statistics, a wrapped asymmetric Laplace distribution is a wrapped probability distribution that results from the "wrapping" of the asymmetric Laplace distribution around the unit circle. For the symmetric case (asymmetry parameter κ = 1), the distribution becomes a wrapped Laplace distribution. The distribution of the ratio of two circular variates (Z) from two different wrapped exponential distributions will have a wrapped asymmetric Laplace distribution. These distributions find application in stochastic modelling of financial data.

References

  1. Vershik, Anatoly M. (2003). Asymptotic combinatorics with applications to mathematical physics a European mathematical summer school held at the Euler Institute, St. Petersburg, Russia, July 9-20, 2001. Berlin [etc.]: Springer. p. 151. ISBN   978-3-540-44890-7.
  2. Kulesza, Alex; Taskar, Ben (2012). "Determinantal Point Processes for Machine Learning". Foundations and Trends in Machine Learning. 5 (2–3): 123–286. arXiv: 1207.6083 . doi:10.1561/2200000044.
  3. Miyoshi, Naoto; Shirai, Tomoyuki (2016). "A Cellular Network Model with Ginibre Configured Base Stations". Advances in Applied Probability. 46 (3): 832–845. doi: 10.1239/aap/1409319562 . ISSN   0001-8678.
  4. Torrisi, Giovanni Luca; Leonardi, Emilio (2014). "Large Deviations of the Interference in the Ginibre Network Model" (PDF). Stochastic Systems. 4 (1): 173–205. doi: 10.1287/13-SSY109 . ISSN   1946-5238.
  5. N. Deng, W. Zhou, and M. Haenggi. The Ginibre point process as a model for wireless networks with repulsion. IEEE Transactions on Wireless Communications, vol. 14, pp. 107-121, Jan. 2015.
  6. 1 2 Hough, J. B., Krishnapur, M., Peres, Y., and Virág, B., Zeros of Gaussian analytic functions and determinantal point processes. University Lecture Series, 51. American Mathematical Society, Providence, RI, 2009.
  7. 1 2 3 A. Soshnikov, Determinantal random point fields. Russian Math. Surveys, 2000, 55 (5), 923–975.
  8. B. Valko. Random matrices, lectures 14–15. Course lecture notes, University of Wisconsin-Madison.
  9. Tracy, Craig A.; Widom, Harold (January 1994). "Level-spacing distributions and the Airy kernel". Communications in Mathematical Physics. 159 (1): 151–174. doi:10.1007/BF02100489. ISSN   0010-3616.
  10. A. Borodin, A. Okounkov, and G. Olshanski, On asymptotics of Plancherel measures for symmetric groups, available via arXiv : math/9905032.
  11. Lyons, R. with Peres, Y., Probability on Trees and Networks. Cambridge University Press, In preparation. Current version available at http://mypage.iu.edu/~rdlyons/