Social network

Last updated
Evolution graph of a social network: Barabasi model. Barabasi Albert model.gif
Evolution graph of a social network: Barabási model.

A social network is a social structure consisting of a set of social actors (such as individuals or organizations), sets of dyadic ties, and other social interactions between actors. The social network perspective provides a set of methods for analyzing the structure of whole social entities as well as a variety of theories explaining the patterns observed in these structures. [1] The study of these structures uses social network analysis to identify local and global patterns, locate influential entities, and examine network dynamics. For instance, social network analysis has been used in studying the spread of misinformation on social media platforms or analyzing the influence of key figures in social networks.

Social networks and the analysis of them is an inherently interdisciplinary academic field which emerged from social psychology, sociology, statistics, and graph theory. Georg Simmel authored early structural theories in sociology emphasizing the dynamics of triads and "web of group affiliations". [2] Jacob Moreno is credited with developing the first sociograms in the 1930s to study interpersonal relationships. These approaches were mathematically formalized in the 1950s and theories and methods of social networks became pervasive in the social and behavioral sciences by the 1980s. [1] [3] Social network analysis is now one of the major paradigms in contemporary sociology, and is also employed in a number of other social and formal sciences. Together with other complex networks, it forms part of the nascent field of network science. [4] [5]

Overview

The social network is a theoretical construct useful in the social sciences to study relationships between individuals, groups, organizations, or even entire societies (social units, see differentiation). The term is used to describe a social structure determined by such interactions. The ties through which any given social unit connects represent the convergence of the various social contacts of that unit. This theoretical approach is, necessarily, relational. An axiom of the social network approach to understanding social interaction is that social phenomena should be primarily conceived and investigated through the properties of relations between and within units, instead of the properties of these units themselves. Thus, one common criticism of social network theory is that individual agency is often ignored [6] although this may not be the case in practice (see agent-based modeling). Precisely because many different types of relations, singular or in combination, form these network configurations, network analytics are useful to a broad range of research enterprises. In social science, these fields of study include, but are not limited to anthropology, biology, communication studies, economics, geography, information science, organizational studies, social psychology, sociology, and sociolinguistics.

History

In the late 1890s, both Émile Durkheim and Ferdinand Tönnies foreshadowed the idea of social networks in their theories and research of social groups. Tönnies argued that social groups can exist as personal and direct social ties that either link individuals who share values and belief ( Gemeinschaft , German, commonly translated as "community") or impersonal, formal, and instrumental social links ( Gesellschaft , German, commonly translated as "society"). [7] Durkheim gave a non-individualistic explanation of social facts, arguing that social phenomena arise when interacting individuals constitute a reality that can no longer be accounted for in terms of the properties of individual actors. [8] Georg Simmel, writing at the turn of the twentieth century, pointed to the nature of networks and the effect of network size on interaction and examined the likelihood of interaction in loosely knit networks rather than groups. [9]

Moreno's sociogram of a 2nd grade class Moreno Sociogram 2nd Grade.png
Moreno's sociogram of a 2nd grade class

Major developments in the field can be seen in the 1930s by several groups in psychology, anthropology, and mathematics working independently. [6] [10] [11] In psychology, in the 1930s, Jacob L. Moreno began systematic recording and analysis of social interaction in small groups, especially classrooms and work groups (see sociometry). In anthropology, the foundation for social network theory is the theoretical and ethnographic work of Bronislaw Malinowski, [12] Alfred Radcliffe-Brown, [13] [14] and Claude Lévi-Strauss. [15] A group of social anthropologists associated with Max Gluckman and the Manchester School, including John A. Barnes, [16] J. Clyde Mitchell and Elizabeth Bott Spillius, [17] [18] often are credited with performing some of the first fieldwork from which network analyses were performed, investigating community networks in southern Africa, India and the United Kingdom. [6] Concomitantly, British anthropologist S. F. Nadel codified a theory of social structure that was influential in later network analysis. [19] In sociology, the early (1930s) work of Talcott Parsons set the stage for taking a relational approach to understanding social structure. [20] [21] Later, drawing upon Parsons' theory, the work of sociologist Peter Blau provides a strong impetus for analyzing the relational ties of social units with his work on social exchange theory. [22] [23] [24]

By the 1970s, a growing number of scholars worked to combine the different tracks and traditions. One group consisted of sociologist Harrison White and his students at the Harvard University Department of Social Relations. Also independently active in the Harvard Social Relations department at the time were Charles Tilly, who focused on networks in political and community sociology and social movements, and Stanley Milgram, who developed the "six degrees of separation" thesis. [25] Mark Granovetter [26] and Barry Wellman [27] are among the former students of White who elaborated and championed the analysis of social networks. [26] [28] [29] [30]

Beginning in the late 1990s, social network analysis experienced work by sociologists, political scientists, and physicists such as Duncan J. Watts, Albert-László Barabási, Peter Bearman, Nicholas A. Christakis, James H. Fowler, and others, developing and applying new models and methods to emerging data available about online social networks, as well as "digital traces" regarding face-to-face networks.

Levels of analysis

Self-organization of a network, based on Nagler, Levina, & Timme (2011) Network self-organization stages.png
Self-organization of a network, based on Nagler, Levina, & Timme (2011)
Centrality Social Network Diagram (large).svg
Centrality

In general, social networks are self-organizing, emergent, and complex, such that a globally coherent pattern appears from the local interaction of the elements that make up the system. [32] [33] These patterns become more apparent as network size increases. However, a global network analysis [34] of, for example, all interpersonal relationships in the world is not feasible and is likely to contain so much information as to be uninformative. Practical limitations of computing power, ethics and participant recruitment and payment also limit the scope of a social network analysis. [35] [36] The nuances of a local system may be lost in a large network analysis, hence the quality of information may be more important than its scale for understanding network properties. Thus, social networks are analyzed at the scale relevant to the researcher's theoretical question. Although levels of analysis are not necessarily mutually exclusive, there are three general levels into which networks may fall: micro-level, meso-level, and macro-level.

Micro level

At the micro-level, social network research typically begins with an individual, snowballing as social relationships are traced, or may begin with a small group of individuals in a particular social context.

Dyadic level: A dyad is a social relationship between two individuals. Network research on dyads may concentrate on structure of the relationship (e.g. multiplexity, strength), social equality, and tendencies toward reciprocity/mutuality.

Triadic level: Add one individual to a dyad, and you have a triad. Research at this level may concentrate on factors such as balance and transitivity, as well as social equality and tendencies toward reciprocity/mutuality. [35] In the balance theory of Fritz Heider the triad is the key to social dynamics. The discord in a rivalrous love triangle is an example of an unbalanced triad, likely to change to a balanced triad by a change in one of the relations. The dynamics of social friendships in society has been modeled by balancing triads. The study is carried forward with the theory of signed graphs.

Actor level: The smallest unit of analysis in a social network is an individual in their social setting, i.e., an "actor" or "ego." Egonetwork analysis focuses on network characteristics, such as size, relationship strength, density, centrality, prestige and roles such as isolates, liaisons, and bridges. [37] Such analyses, are most commonly used in the fields of psychology or social psychology, ethnographic kinship analysis or other genealogical studies of relationships between individuals.

Subset level: Subset levels of network research problems begin at the micro-level, but may cross over into the meso-level of analysis. Subset level research may focus on distance and reachability, cliques, cohesive subgroups, or other group actions or behavior. [38]

Meso level

In general, meso-level theories begin with a population size that falls between the micro- and macro-levels. However, meso-level may also refer to analyses that are specifically designed to reveal connections between micro- and macro-levels. Meso-level networks are low density and may exhibit causal processes distinct from interpersonal micro-level networks. [39]

Social network diagram, meso-level Social Red.jpg
Social network diagram, meso-level

Organizations: Formal organizations are social groups that distribute tasks for a collective goal. [40] Network research on organizations may focus on either intra-organizational or inter-organizational ties in terms of formal or informal relationships. Intra-organizational networks themselves often contain multiple levels of analysis, especially in larger organizations with multiple branches, franchises or semi-autonomous departments. In these cases, research is often conducted at a work group level and organization level, focusing on the interplay between the two structures. [40] Experiments with networked groups online have documented ways to optimize group-level coordination through diverse interventions, including the addition of autonomous agents to the groups. [41]

Randomly distributed networks: Exponential random graph models of social networks became state-of-the-art methods of social network analysis in the 1980s. This framework has the capacity to represent social-structural effects commonly observed in many human social networks, including general degree-based structural effects commonly observed in many human social networks as well as reciprocity and transitivity, and at the node-level, homophily and attribute-based activity and popularity effects, as derived from explicit hypotheses about dependencies among network ties. Parameters are given in terms of the prevalence of small subgraph configurations in the network and can be interpreted as describing the combinations of local social processes from which a given network emerges. These probability models for networks on a given set of actors allow generalization beyond the restrictive dyadic independence assumption of micro-networks, allowing models to be built from theoretical structural foundations of social behavior. [42]

Examples of a random network and a scale-free network. Each graph has 32 nodes and 32 links. Note the "hubs" (large-degree nodes) in the scale-free diagram (on the right). Scale-free network sample.svg
Examples of a random network and a scale-free network. Each graph has 32 nodes and 32 links. Note the "hubs" (large-degree nodes) in the scale-free diagram (on the right).

Scale-free networks: A scale-free network is a network whose degree distribution follows a power law, at least asymptotically. In network theory a scale-free ideal network is a random network with a degree distribution that unravels the size distribution of social groups. [43] Specific characteristics of scale-free networks vary with the theories and analytical tools used to create them, however, in general, scale-free networks have some common characteristics. One notable characteristic in a scale-free network is the relative commonness of vertices with a degree that greatly exceeds the average. The highest-degree nodes are often called "hubs", and may serve specific purposes in their networks, although this depends greatly on the social context. Another general characteristic of scale-free networks is the clustering coefficient distribution, which decreases as the node degree increases. This distribution also follows a power law. [44] The Barabási model of network evolution shown above is an example of a scale-free network.

Macro level

Rather than tracing interpersonal interactions, macro-level analyses generally trace the outcomes of interactions, such as economic or other resource transfer interactions over a large population.

Diagram: section of a large-scale social network Diagram of a social network.jpg
Diagram: section of a large-scale social network

Large-scale networks: Large-scale network is a term somewhat synonymous with "macro-level." It is primarily used in social and behavioral sciences, and in economics. Originally, the term was used extensively in the computer sciences (see large-scale network mapping).

Complex networks: Most larger social networks display features of social complexity, which involves substantial non-trivial features of network topology, with patterns of complex connections between elements that are neither purely regular nor purely random (see, complexity science, dynamical system and chaos theory), as do biological, and technological networks. Such complex network features include a heavy tail in the degree distribution, a high clustering coefficient, assortativity or disassortativity among vertices, community structure (see stochastic block model), and hierarchical structure. In the case of agency-directed networks these features also include reciprocity, triad significance profile (TSP, see network motif), and other features. In contrast, many of the mathematical models of networks that have been studied in the past, such as lattices and random graphs, do not show these features. [45]

Imported theories

Various theoretical frameworks have been imported for the use of social network analysis. The most prominent of these are Graph theory, Balance theory, Social comparison theory, and more recently, the Social identity approach. [46]

Indigenous theories

Few complete theories have been produced from social network analysis. Two that have are structural role theory and heterophily theory.

The basis of Heterophily Theory was the finding in one study that more numerous weak ties can be important in seeking information and innovation, as cliques have a tendency to have more homogeneous opinions as well as share many common traits. This homophilic tendency was the reason for the members of the cliques to be attracted together in the first place. However, being similar, each member of the clique would also know more or less what the other members knew. To find new information or insights, members of the clique will have to look beyond the clique to its other friends and acquaintances. This is what Granovetter called "the strength of weak ties". [47]

Structural holes

In the context of networks, social capital exists where people have an advantage because of their location in a network. Contacts in a network provide information, opportunities and perspectives that can be beneficial to the central player in the network. Most social structures tend to be characterized by dense clusters of strong connections. [48] Information within these clusters tends to be rather homogeneous and redundant. Non-redundant information is most often obtained through contacts in different clusters. [49] When two separate clusters possess non-redundant information, there is said to be a structural hole between them. [49] Thus, a network that bridges structural holes will provide network benefits that are in some degree additive, rather than overlapping. An ideal network structure has a vine and cluster structure, providing access to many different clusters and structural holes. [49]

Networks rich in structural holes are a form of social capital in that they offer information benefits. The main player in a network that bridges structural holes is able to access information from diverse sources and clusters. [49] For example, in business networks, this is beneficial to an individual's career because he is more likely to hear of job openings and opportunities if his network spans a wide range of contacts in different industries/sectors. This concept is similar to Mark Granovetter's theory of weak ties, which rests on the basis that having a broad range of contacts is most effective for job attainment. Structural holes have been widely applied in social network analysis, resulting in applications in a wide range of practical scenarios as well as machine learning-based social prediction. [50]

Research clusters

Art Networks

Research has used network analysis to examine networks created when artists are exhibited together in museum exhibition. Such networks have been shown to affect an artist's recognition in history and historical narratives, even when controlling for individual accomplishments of the artist. [51] [52] Other work examines how network grouping of artists can affect an individual artist's auction performance. [53] An artist's status has been shown to increase when associated with higher status networks, though this association has diminishing returns over an artist's career.

Community

In J.A. Barnes' day, a "community" referred to a specific geographic location and studies of community ties had to do with who talked, associated, traded, and attended church with whom. Today, however, there are extended "online" communities developed through telecommunications devices and social network services. Such devices and services require extensive and ongoing maintenance and analysis, often using network science methods. Community development studies, today, also make extensive use of such methods.

Complex networks

Complex networks require methods specific to modelling and interpreting social complexity and complex adaptive systems, including techniques of dynamic network analysis. Mechanisms such as Dual-phase evolution explain how temporal changes in connectivity contribute to the formation of structure in social networks.

Conflict and Cooperation

The study of social networks is being used to examine the nature of interdependencies between actors and the ways in which these are related to outcomes of conflict and cooperation. Areas of study include cooperative behavior among participants in collective actions such as protests; promotion of peaceful behavior, social norms, and public goods within communities through networks of informal governance; the role of social networks in both intrastate conflict and interstate conflict; and social networking among politicians, constituents, and bureaucrats. [54]

Criminal networks

In criminology and urban sociology, much attention has been paid to the social networks among criminal actors. For example, murders can be seen as a series of exchanges between gangs. Murders can be seen to diffuse outwards from a single source, because weaker gangs cannot afford to kill members of stronger gangs in retaliation, but must commit other violent acts to maintain their reputation for strength. [55]

Diffusion of innovations

Diffusion of ideas and innovations studies focus on the spread and use of ideas from one actor to another or one culture and another. This line of research seeks to explain why some become "early adopters" of ideas and innovations, and links social network structure with facilitating or impeding the spread of an innovation. A case in point is the social diffusion of linguistic innovation such as neologisms. Experiments and large-scale field trials (e.g., by Nicholas Christakis and collaborators) have shown that cascades of desirable behaviors can be induced in social groups, in settings as diverse as Honduras villages, [56] [57] Indian slums, [58] or in the lab. [59] Still other experiments have documented the experimental induction of social contagion of voting behavior, [60] emotions, [61] risk perception, [62] and commercial products. [63]

Demography

In demography, the study of social networks has led to new sampling methods for estimating and reaching populations that are hard to enumerate (for example, homeless people or intravenous drug users.) For example, respondent driven sampling is a network-based sampling technique that relies on respondents to a survey recommending further respondents. [64] [65]

Economic sociology

The field of sociology focuses almost entirely on networks of outcomes of social interactions. More narrowly, economic sociology considers behavioral interactions of individuals and groups through social capital and social "markets". Sociologists, such as Mark Granovetter, have developed core principles about the interactions of social structure, information, ability to punish or reward, and trust that frequently recur in their analyses of political, economic and other institutions. Granovetter examines how social structures and social networks can affect economic outcomes like hiring, price, productivity and innovation and describes sociologists' contributions to analyzing the impact of social structure and networks on the economy. [66]

Health care

Analysis of social networks is increasingly incorporated into health care analytics, not only in epidemiological studies but also in models of patient communication and education, disease prevention, mental health diagnosis and treatment, and in the study of health care organizations and systems. [67]

Human ecology

Human ecology is an interdisciplinary and transdisciplinary study of the relationship between humans and their natural, social, and built environments. The scientific philosophy of human ecology has a diffuse history with connections to geography, sociology, psychology, anthropology, zoology, and natural ecology. [68] [69]

Literary networks

In the study of literary systems, network analysis has been applied by Anheier, Gerhards and Romo, [70] De Nooy, [71] Senekal, [72] and Lotker, [73] to study various aspects of how literature functions. The basic premise is that polysystem theory, which has been around since the writings of Even-Zohar, can be integrated with network theory and the relationships between different actors in the literary network, e.g. writers, critics, publishers, literary histories, etc., can be mapped using visualization from SNA.

Organizational studies

Research studies of formal or informal organization relationships, organizational communication, economics, economic sociology, and other resource transfers. Social networks have also been used to examine how organizations interact with each other, characterizing the many informal connections that link executives together, as well as associations and connections between individual employees at different organizations. [74] Many organizational social network studies focus on teams. [75] Within team network studies, research assesses, for example, the predictors and outcomes of centrality and power, density and centralization of team instrumental and expressive ties, and the role of between-team networks. Intra-organizational networks have been found to affect organizational commitment, [76] organizational identification, [37] interpersonal citizenship behaviour. [77]

Social capital

Social capital is a form of economic and cultural capital in which social networks are central, transactions are marked by reciprocity, trust, and cooperation, and market agents produce goods and services not mainly for themselves, but for a common good. Social capital is split into three dimensions: the structural, the relational and the cognitive dimension. The structural dimension describes how partners interact with each other and which specific partners meet in a social network. Also, the structural dimension of social capital indicates the level of ties among organizations. [78] This dimension is highly connected to the relational dimension which refers to trustworthiness, norms, expectations and identifications of the bonds between partners. The relational dimension explains the nature of these ties which is mainly illustrated by the level of trust accorded to the network of organizations. [78] The cognitive dimension analyses the extent to which organizations share common goals and objectives as a result of their ties and interactions. [78]

Social capital is a sociological concept about the value of social relations and the role of cooperation and confidence to achieve positive outcomes. The term refers to the value one can get from their social ties. For example, newly arrived immigrants can make use of their social ties to established migrants to acquire jobs they may otherwise have trouble getting (e.g., because of unfamiliarity with the local language). A positive relationship exists between social capital and the intensity of social network use. [79] [80] [81] In a dynamic framework, higher activity in a network feeds into higher social capital which itself encourages more activity. [79] [82]

Advertising

This particular cluster focuses on brand-image and promotional strategy effectiveness, taking into account the impact of customer participation on sales and brand-image. This is gauged through techniques such as sentiment analysis which rely on mathematical areas of study such as data mining and analytics. This area of research produces vast numbers of commercial applications as the main goal of any study is to understand consumer behaviour and drive sales.

Network position and benefits

In many organizations, members tend to focus their activities inside their own groups, which stifles creativity and restricts opportunities. A player whose network bridges structural holes has an advantage in detecting and developing rewarding opportunities. [48] Such a player can mobilize social capital by acting as a "broker" of information between two clusters that otherwise would not have been in contact, thus providing access to new ideas, opinions and opportunities. British philosopher and political economist John Stuart Mill, writes, "it is hardly possible to overrate the value of placing human beings in contact with persons dissimilar to themselves.... Such communication [is] one of the primary sources of progress." [83] Thus, a player with a network rich in structural holes can add value to an organization through new ideas and opportunities. This in turn, helps an individual's career development and advancement.

A social capital broker also reaps control benefits of being the facilitator of information flow between contacts. Full communication with exploratory mindsets and information exchange generated by dynamically alternating positions in a social network promotes creative and deep thinking. [84] In the case of consulting firm Eden McCallum, the founders were able to advance their careers by bridging their connections with former big three consulting firm consultants and mid-size industry firms. [85] By bridging structural holes and mobilizing social capital, players can advance their careers by executing new opportunities between contacts.

There has been research that both substantiates and refutes the benefits of information brokerage. A study of high tech Chinese firms by Zhixing Xiao found that the control benefits of structural holes are "dissonant to the dominant firm-wide spirit of cooperation and the information benefits cannot materialize due to the communal sharing values" of such organizations. [86] However, this study only analyzed Chinese firms, which tend to have strong communal sharing values. Information and control benefits of structural holes are still valuable in firms that are not quite as inclusive and cooperative on the firm-wide level. In 2004, Ronald Burt studied 673 managers who ran the supply chain for one of America's largest electronics companies. He found that managers who often discussed issues with other groups were better paid, received more positive job evaluations and were more likely to be promoted. [48] Thus, bridging structural holes can be beneficial to an organization, and in turn, to an individual's career.

Social media

Computer networks combined with social networking software produce a new medium for social interaction. A relationship over a computerized social networking service can be characterized by context, direction, and strength. The content of a relation refers to the resource that is exchanged. In a computer-mediated communication context, social pairs exchange different kinds of information, including sending a data file or a computer program as well as providing emotional support or arranging a meeting. With the rise of electronic commerce, information exchanged may also correspond to exchanges of money, goods or services in the "real" world. [87] Social network analysis methods have become essential to examining these types of computer mediated communication.

In addition, the sheer size and the volatile nature of social media has given rise to new network metrics. A key concern with networks extracted from social media is the lack of robustness of network metrics given missing data. [88]

Segregation

Based on the pattern of homophily, ties between people are most likely to occur between nodes that are most similar to each other, or within neighbourhood segregation, individuals are most likely to inhabit the same regional areas as other individuals who are like them. Therefore, social networks can be used as a tool to measure the degree of segregation or homophily within a social network. Social Networks can both be used to simulate the process of homophily but it can also serve as a measure of level of exposure of different groups to each other within a current social network of individuals in a certain area. [89]

See also

Related Research Articles

Social capital is "the networks of relationships among people who live and work in a particular society, enabling that society to function effectively". It involves the effective functioning of social groups through interpersonal relationships, a shared sense of identity, a shared understanding, shared norms, shared values, trust, cooperation, and reciprocity. Some have described it as a form of capital that produces public goods for a common purpose, although this does not align with how it has been measured. Social capital is classified into bridging and bonding. Bridging social capital refers to the weak ties individuals form in heterogeneous limited interactions that is more likely to provide valuable new information. Bonding social capital refers to strong ties where the intimate relations people feel close to and trust.

<span class="mw-page-title-main">Urban sociology</span> Sociological study of life and human interaction in metropolitan areas

Urban sociology is the sociological study of cities and urban life. One of the field’s oldest sub-disciplines, urban sociology studies and examines the social, historical, political, cultural, economic, and environmental forces that have shaped urban environments. Like most areas of sociology, urban sociologists use statistical analysis, observation, archival research, census data, social theory, interviews, and other methods to study a range of topics, including poverty, racial residential segregation, economic development, migration and demographic trends, gentrification, homelessness, blight and crime, urban decline, and neighborhood changes and revitalization. Urban sociological analysis provides critical insights that shape and guide urban planning and policy-making.

<span class="mw-page-title-main">Social network analysis</span> Analysis of social structures using network and graph theory

Social network analysis (SNA) is the process of investigating social structures through the use of networks and graph theory. It characterizes networked structures in terms of nodes and the ties, edges, or links that connect them. Examples of social structures commonly visualized through social network analysis include social media networks, meme proliferation, information circulation, friendship and acquaintance networks, business networks, knowledge networks, difficult working relationships, collaboration graphs, kinship, disease transmission, and sexual relationships. These networks are often visualized through sociograms in which nodes are represented as points and ties are represented as lines. These visualizations provide a means of qualitatively assessing networks by varying the visual representation of their nodes and edges to reflect attributes of interest.

Social simulation is a research field that applies computational methods to study issues in the social sciences. The issues explored include problems in computational law, psychology, organizational behavior, sociology, political science, economics, anthropology, geography, engineering, archaeology and linguistics.

Mark Sanford Granovetter is an American sociologist and professor at Stanford University. He is best known for his work in social network theory and in economic sociology, particularly his theory on the spread of information in social networks known as The Strength of Weak Ties (1973). In 2014 Granovetter was named a Citation Laureate by Thomson Reuters and added to that organization’s list of predicted Nobel Prize winners in economics. Data from the Web of Science show that Granovetter has written both the first and third most cited sociology articles.

<span class="mw-page-title-main">Economic sociology</span> Branch of sociology

Economic sociology is the study of the social cause and effect of various economic phenomena. The field can be broadly divided into a classical period and a contemporary one, known as "new economic sociology".

<span class="mw-page-title-main">Computational sociology</span> Branch of the discipline of sociology

Computational sociology is a branch of sociology that uses computationally intensive methods to analyze and model social phenomena. Using computer simulations, artificial intelligence, complex statistical methods, and analytic approaches like social network analysis, computational sociology develops and tests theories of complex social processes through bottom-up modeling of social interactions.

<span class="mw-page-title-main">Barry Wellman</span> American sociologist (1942–2024)

Barry Wellman was an American-Canadian sociologist and was the co-director of the Toronto-based international NetLab Network. His areas of research were community sociology, the Internet, human-computer interaction and social structure, as manifested in social networks in communities and organizations. His overarching interest was in the paradigm shift from group-centered relations to networked individualism. He has written or co-authored more than 300 articles, chapters, reports and books. Wellman was a professor at the Department of Sociology, University of Toronto for 46 years, from 1967 to 2013, including a five-year stint as S.D. Clark Professor.

<span class="mw-page-title-main">Harrison White</span> American sociologist (1930–2024)

Harrison Colyar White was an American sociologist who was the Giddings Professor of Sociology at Columbia University. White played an influential role in the “Harvard Revolution” in social networks and the New York School of relational sociology. He is credited with the development of a number of mathematical models of social structure including vacancy chains and blockmodels. He has been a leader of a revolution in sociology that is still in process, using models of social structure that are based on patterns of relations instead of the attributes and attitudes of individuals.

<span class="mw-page-title-main">Mathematical sociology</span> Interdisciplinary field of research

Mathematical sociology is an interdisciplinary field of research concerned with the use of mathematics within sociological research.

<span class="mw-page-title-main">Social psychology (sociology)</span> Relationship between the individual and society

In sociology, social psychology studies the relationship between the individual and society. Although studying many of the same substantive topics as its counterpart in the field of psychology, sociological social psychology places relatively more emphasis on the influence of social structure and culture on individual outcomes, such as personality, behavior, and one's position in social hierarchies. Researchers broadly focus on higher levels of analysis, directing attention mainly to groups and the arrangement of relationships among people. This subfield of sociology is broadly recognized as having three major perspectives: Symbolic interactionism, social structure and personality, and structural social psychology.

<span class="mw-page-title-main">Interpersonal ties</span>

In social network analysis and mathematical sociology, interpersonal ties are defined as information-carrying connections between people. Interpersonal ties, generally, come in three varieties: strong, weak or absent. Weak social ties, it is argued, are responsible for the majority of the embeddedness and structure of social networks in society as well as the transmission of information through these networks. Specifically, more novel information flows to individuals through weak rather than strong ties. Because our close friends tend to move in the same circles that we do, the information they receive overlaps considerably with what we already know. Acquaintances, by contrast, know people that we do not, and thus receive more novel information.

Social network analysis (SNA) software is software which facilitates quantitative or qualitative analysis of social networks, by describing features of a network either through numerical or visual representation.

<span class="mw-page-title-main">Sociology</span> Social science that studies human society and its development

Sociology is the scientific study of human society that focuses on society, human social behavior, patterns of social relationships, social interaction, and aspects of culture associated with everyday life. Regarded as a part of both the social sciences and humanities, sociology uses various methods of empirical investigation and critical analysis to develop a body of knowledge about social order and social change. Sociological subject matter ranges from micro-level analyses of individual interaction and agency to macro-level analyses of social systems and social structure. Applied sociological research may be applied directly to social policy and welfare, whereas theoretical approaches may focus on the understanding of social processes and phenomenological method.

Heterophily, or love of the different, is the tendency of individuals to collect in diverse groups; it is the opposite of homophily. This phenomenon can be seen in relationships between individuals. As a result, it can be analyzed in the workplace to create a more efficient and innovative workplace. It has also become an area of social network analysis.

Learning analytics is the measurement, collection, analysis and reporting of data about learners and their contexts, for purposes of understanding and optimizing learning and the environments in which it occurs. The growth of online learning since the 1990s, particularly in higher education, has contributed to the advancement of Learning Analytics as student data can be captured and made available for analysis. When learners use an LMS, social media, or similar online tools, their clicks, navigation patterns, time on task, social networks, information flow, and concept development through discussions can be tracked. The rapid development of massive open online courses (MOOCs) offers additional data for researchers to evaluate teaching and learning in online environments.

Three degrees of influence is a theory in the realm of social networks, proposed by Nicholas A. Christakis and James H. Fowler in 2007. This argument is basically that peer effects need not stop at one degree of separation. Rather, across a broad set of empirical settings, using both observational and experimental methods, it has been observed that the effect seems, in many cases, to no longer be meaningful at a social horizon of three degrees.

The sociological theory of diffusion is the study of the diffusion of innovations throughout social groups and organizations. The topic has seen rapid growth since the 1990s, reflecting curiosity about the process of social change and "fueled by interest in institutional arguments and in network and dynamic analysis." The theory uses a case study of the growth of business computing to explain different mechanisms of diffusion.

Structural holes is a concept from social network research, originally developed by Ronald Stuart Burt. A structural hole is understood as a gap between two individuals who have complementary sources to information. The study of structural holes spans the fields of sociology, economics, and computer science. Burt introduced this concept in an attempt to explain the origin of differences in social capital. Burt’s theory suggests that individuals hold certain positional advantages/disadvantages from how they are embedded in neighborhoods or other social structures.

Peter Marsden is an American sociologist. He is the Edith and Benjamin Geisinger Professor of Sociology at Harvard University.

References

  1. 1 2 Wasserman, Stanley; Faust, Katherine (1994). "Social Network Analysis in the Social and Behavioral Sciences". Social Network Analysis: Methods and Applications . Cambridge University Press. pp.  1–27. ISBN   9780521387071.
  2. Scott, W. Richard; Davis, Gerald F. (2003). "Networks In and Around Organizations". Organizations and Organizing. Pearson Prentice Hall. ISBN   978-0-13-195893-7.
  3. Freeman, Linton (2004). The Development of Social Network Analysis: A Study in the Sociology of Science. Empirical Press. ISBN   978-1-59457-714-7.
  4. Borgatti, Stephen P.; Mehra, Ajay; Brass, Daniel J.; Labianca, Giuseppe (2009). "Network Analysis in the Social Sciences". Science. 323 (5916): 892–895. Bibcode:2009Sci...323..892B. CiteSeerX   10.1.1.536.5568 . doi:10.1126/science.1165821. PMID   19213908. S2CID   522293.
  5. Easley, David; Kleinberg, Jon (2010). "Overview". Networks, Crowds, and Markets: Reasoning about a Highly Connected World . Cambridge University Press. pp.  1–20. ISBN   978-0-521-19533-1.
  6. 1 2 3 Scott, John P. (2000). Social Network Analysis: A Handbook (2nd edition). Thousand Oaks, CA: Sage Publications.
  7. Tönnies, Ferdinand (1887). Gemeinschaft und Gesellschaft, Leipzig: Fues's Verlag. (Translated, 1957 by Charles Price Loomis as Community and Society, East Lansing: Michigan State University Press.)
  8. Durkheim, Emile (1893). De la division du travail social: étude sur l'organisation des sociétés supérieures, Paris: F. Alcan. (Translated, 1964, by Lewis A. Coser as The Division of Labor in Society, New York: Free Press.)
  9. Simmel, Georg (1908). Soziologie, Leipzig: Duncker & Humblot.
  10. For a historical overview of the development of social network analysis, see: Carrington, Peter J.; Scott, John (2011). "Introduction". The Sage Handbook of Social Network Analysis. Sage. p. 1. ISBN   978-1-84787-395-8.
  11. See also the diagram in Scott, John (2000). Social Network Analysis: A Handbook. Sage. p. 8. ISBN   978-0-7619-6339-4.
  12. Malinowski, Bronislaw (1913). The Family Among the Australian Aborigines: A Sociological Study. London: University of London Press.
  13. Radcliffe-Brown, Alfred Reginald (1930) The social organization of Australian tribes. Sydney, Australia: University of Sydney Oceania monographs, No.1.
  14. Radcliffe-Brown, A. R. (1940). "On social structure". Journal of the Royal Anthropological Institute. 70 (1): 1–12. doi:10.2307/2844197. JSTOR   2844197.
  15. Lévi-Strauss, Claude ([1947]1967). Les structures élémentaires de la parenté. Paris: La Haye, Mouton et Co. (Translated, 1969 by J. H. Bell, J. R. von Sturmer, and R. Needham, 1969, as The Elementary Structures of Kinship, Boston: Beacon Press.)
  16. Barnes, John (1954). "Class and Committees in a Norwegian Island Parish". Human Relations, (7): 39–58.
  17. Freeman, Linton C.; Wellman, Barry (1995). "A note on the ancestral Toronto home of social network analysis". Connections. 18 (2): 15–19.
  18. Savage, Mike (2008). "Elizabeth Bott and the formation of modern British sociology". The Sociological Review. 56 (4): 579–605. doi:10.1111/j.1467-954x.2008.00806.x. S2CID   145286556.
  19. Nadel, S. F. 1957. The Theory of Social Structure. London: Cohen and West.
  20. Parsons, Talcott ([1937] 1949). The Structure of Social Action: A Study in Social Theory with Special Reference to a Group of European Writers. New York: The Free Press.
  21. Parsons, Talcott (1951). The Social System. New York: The Free Press.
  22. Blau, Peter (1956). Bureaucracy in Modern Society. New York: Random House, Inc.
  23. Blau, Peter (1960). "A Theory of Social Integration". The American Journal of Sociology, (65)6: 545–556, (May).
  24. Blau, Peter (1964). Exchange and Power in Social Life.
  25. Bernie Hogan. "The Networked Individual: A Profile of Barry Wellman". Archived from the original on 2012-07-12. Retrieved 2012-06-15.
  26. 1 2 Granovetter, Mark (2007). "Introduction for the French Reader". Sociologica. 2: 1–8.
  27. Wellman, Barry (1988). "Structural analysis: From method and metaphor to theory and substance". pp. 19–61 in B. Wellman and S. D. Berkowitz (eds.) Social Structures: A Network Approach, Cambridge, UK: Cambridge University Press.
  28. Mullins, Nicholas. Theories and Theory Groups in Contemporary American Sociology. New York: Harper and Row, 1973.
  29. Tilly, Charles, ed. An Urban World. Boston: Little Brown, 1974.
  30. Wellman, Barry. 1988. "Structural Analysis: From Method and Metaphor to Theory and Substance". pp. 19–61 in Social Structures: A Network Approach, edited by Barry Wellman and S. D. Berkowitz. Cambridge: Cambridge University Press.
  31. Nagler, Jan; Anna Levina; Marc Timme (2011). "Impact of single links in competitive percolation". Nature Physics. 7 (3): 265–270. arXiv: 1103.0922 . Bibcode:2011NatPh...7..265N. doi:10.1038/nphys1860. S2CID   2809783.
  32. Newman, Mark, Albert-László Barabási and Duncan J. Watts (2006). The Structure and Dynamics of Networks (Princeton Studies in Complexity). Oxford: Princeton University Press.
  33. Wellman, Barry (2008). "Review: The development of social network analysis: A study in the sociology of science". Contemporary Sociology. 37 (3): 221–222. doi:10.1177/009430610803700308. S2CID   140433919.
  34. Wasserman, Stanley; Faust, Katherine (1998). Social network analysis : methods and applications (Reprint. ed.). Cambridge [u.a.]: Cambridge Univ. Press. ISBN   978-0521382694.
  35. 1 2 Kadushin, C. (2012). Understanding social networks: Theories, concepts, and findings. Oxford: Oxford University Press.
  36. Granovetter, M. (1976). "Network sampling: Some first steps". American Journal of Sociology. 81 (6): 1287–1303. doi:10.1086/226224. S2CID   40359730.
  37. 1 2 Jones, C.; Volpe, E.H. (2011). "Organizational identification: Extending our understanding of social identities through social networks". Journal of Organizational Behavior. 32 (3): 413–434. doi:10.1002/job.694.
  38. de Nooy, Wouter (2012). "Social Network Analysis, Graph Theoretical Approaches to". Computational Complexity. Springer. pp. 2864–2877. doi:10.1007/978-1-4614-1800-9_176. ISBN   978-1-4614-1800-9.
  39. Hedström, Peter; Sandell, Rickard; Stern, Charlotta (2000). "Mesolevel Networks and the Diffusion of Social Movements: The Case of the Swedish Social Democratic Party" (PDF). American Journal of Sociology. 106 (1): 145–172. doi:10.1086/303109. hdl:10016/34606. S2CID   3609428. Archived (PDF) from the original on 2016-03-04. Retrieved 2012-02-26.
  40. 1 2 Riketta, M.; Nienber, S. (2007). "Multiple identities and work motivation: The role of perceived compatibility between nested organizational units". British Journal of Management. 18: S61–77. doi: 10.1111/j.1467-8551.2007.00526.x . S2CID   144857162.
  41. Shirado, Hirokazu; Christakis, Nicholas A (2017). "Locally noisy autonomous agents improve global human coordination in network experiments". Nature. 545 (7654): 370–374. Bibcode:2017Natur.545..370S. doi:10.1038/nature22332. PMC   5912653 . PMID   28516927.
  42. Cranmer, Skyler J.; Desmarais, Bruce A. (2011). "Inferential Network Analysis with Exponential Random Graph Models". Political Analysis. 19 (1): 66–86. CiteSeerX   10.1.1.623.751 . doi:10.1093/pan/mpq037.
  43. Moreira, André A.; Demétrius R. Paula; Raimundo N. Costa Filho; José S. Andrade Jr. (2006). "Competitive cluster growth in complex networks". Physical Review E. 73 (6): 065101. arXiv: cond-mat/0603272 . Bibcode:2006PhRvE..73f5101M. doi:10.1103/PhysRevE.73.065101. PMID   16906890. S2CID   45651735.
  44. Barabási, Albert-László (2003). Linked: how everything is connected to everything else and what it means for business, science, and everyday life. New York: Plum.
  45. Strogatz, Steven H. (2001). "Exploring complex networks". Nature. 410 (6825): 268–276. Bibcode:2001Natur.410..268S. doi: 10.1038/35065725 . PMID   11258382.
  46. Kilduff, M.; Tsai, W. (2003). Social networks and organisations. Sage Publications.
  47. Granovetter, M. (1973). "The strength of weak ties". American Journal of Sociology. 78 (6): 1360–1380. doi:10.1086/225469. S2CID   59578641.
  48. 1 2 3 Burt, Ronald (2004). "Structural Holes and Good Ideas". American Journal of Sociology. 110 (2): 349–399. CiteSeerX   10.1.1.388.2251 . doi:10.1086/421787. S2CID   2152743.
  49. 1 2 3 4 Burt, Ronald (1992). Structural Holes: The Social Structure of Competition. Cambridge, MA: Harvard University Press.
  50. Lin, Zihang; Zhang, Yuwei; Gong, Qingyuan; Chen, Yang; Oksanen, Atte; Ding, Aaron Yi (2022). "Structural Hole Theory in Social Network Analysis: A Review" (PDF). IEEE Transactions on Computational Social Systems. 9 (3): 724–739. doi:10.1109/TCSS.2021.3070321.
  51. Braden, L.E.A.; Teekens, Thomas (2020-08-01). "Historic networks and commemoration: Connections created through museum exhibitions". Poetics. 81: 101446. doi: 10.1016/j.poetic.2020.101446 . hdl: 1765/127209 . ISSN   0304-422X.
  52. Braden, L. E. A. (2021-01-01). "Networks Created Within Exhibition: The Curators' Effect on Historical Recognition". American Behavioral Scientist. 65 (1): 25–43. doi: 10.1177/0002764218800145 . ISSN   0002-7642.
  53. Braden, L. E. A.; Teekens, Thomas (September 2019). "Reputation, Status Networks, and the Art Market". Arts. 8 (3): 81. doi: 10.3390/arts8030081 . hdl: 1765/119341 .
  54. Larson, Jennifer M. (11 May 2021). "Networks of Conflict and Cooperation". Annual Review of Political Science. 24 (1): 89–107. doi: 10.1146/annurev-polisci-041719-102523 .
  55. Papachristos, Andrew (2009). "Murder by Structure: Dominance Relations and the Social Structure of Gang Homicide" (PDF). American Journal of Sociology. 115 (1): 74–128. doi:10.2139/ssrn.855304. PMID   19852186. S2CID   24605697 . Archived from the original (PDF) on 7 April 2014. Retrieved 29 March 2013.
  56. Kim, David A.; Hwong, Alison R.; Stafford, Derek; Hughes, D. Alex; O'Malley, A. James; Fowler, James H.; Christakis, Nicholas A. (2015-07-11). "Social network targeting to maximise population behaviour change: a cluster randomised controlled trial". Lancet. 386 (9989): 145–153. doi:10.1016/S0140-6736(15)60095-2. ISSN   1474-547X. PMC   4638320 . PMID   25952354.
  57. Airoldi, Edoardo M.; Christakis, Nicholas A. (2024-05-03). "Induction of social contagion for diverse outcomes in structured experiments in isolated villages". Science. 384 (6695): eadi5147. doi: 10.1126/science.adi5147 . ISSN   0036-8075. PMID   38696582.
  58. Alexander, Marcus; Forastiere, Laura; Gupta, Swati; Christakis, Nicholas A. (2022-07-26). "Algorithms for seeding social networks can enhance the adoption of a public health intervention in urban India". Proceedings of the National Academy of Sciences. 119 (30): e2120742119. Bibcode:2022PNAS..11920742A. doi: 10.1073/pnas.2120742119 . ISSN   0027-8424. PMC   9335263 . PMID   35862454.
  59. Fowler, James H.; Christakis, Nicholas A. (2010). "Cooperative behavior cascades in human social networks". Proceedings of the National Academy of Sciences. 107 (12): 5334–5338. arXiv: 0908.3497 . Bibcode:2010PNAS..107.5334F. doi: 10.1073/pnas.0913149107 . PMC   2851803 . PMID   20212120.
  60. Bond, RM; Fariss, CJ; Jones, JJ; Kramer, ADI; Marlow, C; Settle, JE; Fowler, JH (2012). "A 61-million-person experiment in social influence and political mobilization". Nature. 489 (7415): 295–298. Bibcode:2012Natur.489..295B. doi:10.1038/nature11421. PMC   3834737 . PMID   22972300.
  61. Kramer, ADI; Guillory, JE; Hancock, JT (2014). "Experimental evidence of massive-scale emotional contagion through social networks" (PDF). Proceedings of the National Academy of Sciences. 111 (24): 8788–8790. Bibcode:2014PNAS..111.8788K. doi: 10.1073/pnas.1320040111 . PMC   4066473 . PMID   24889601.
  62. Moussaid, M; Brighton, H; Gaissmaier, W (2015). "The amplification of risk in experimental diffusion chains" (PDF). Proceedings of the National Academy of Sciences. 112 (18): 5631–5636. arXiv: 1504.05331 . Bibcode:2015PNAS..112.5631M. doi: 10.1073/pnas.1421883112 . PMC   4426405 . PMID   25902519.
  63. Aral, Sinan; Walker, Dylan (2011). "Creating Social Contagion Through Viral Product Design: A Randomized Trial of Peer Influence in Networks". Management Science. 57 (9): 1623–1639. doi:10.1287/mnsc.1110.1421.
  64. Gile, Krista J.; Beaudry, Isabelle S.; Handcock, Mark S.; Ott, Miles Q. (7 March 2018). "Methods for Inference from Respondent-Driven Sampling Data". Annual Review of Statistics and Its Application. 5 (1): 65–93. Bibcode:2018AnRSA...5...65G. doi:10.1146/annurev-statistics-031017-100704. S2CID   67695078. Archived from the original on 31 January 2022. Retrieved 21 September 2021.
  65. Heckathorn, Douglas D.; Cameron, Christopher J. (31 July 2017). "Network Sampling: From Snowball and Multiplicity to Respondent-Driven Sampling". Annual Review of Sociology. 43 (1): 101–119. doi: 10.1146/annurev-soc-060116-053556 .
  66. Granovetter, Mark (2005). "The Impact of Social Structure on Economic Outcomes". The Journal of Economic Perspectives. 19 (1): 33–50. doi:10.1257/0895330053147958. JSTOR   4134991. S2CID   263519132.
  67. Levy, Judith and Bernice Pescosolido (2002). Social Networks and Health. Boston, MA: JAI Press.
  68. Crona, Beatrice and Klaus Hubacek (eds.) (2010). "Special Issue: Social network analysis in natural resource governance" Archived 2012-06-04 at the Wayback Machine . Ecology and Society, 48.
  69. Ernstson, Henrich (2010). "Reading list: Using social network analysis (SNA) in social-ecological studies". Resilience Science Archived 2012-04-03 at the Wayback Machine
  70. Anheier, H. K.; Romo, F. P. (1995). "Forms of capital and social structure of fields: examining Bourdieu's social topography". American Journal of Sociology. 100 (4): 859–903. doi:10.1086/230603. S2CID   143587142.
  71. De Nooy, W (2003). "Fields and networks: Correspondence analysis and social network analysis in the framework of Field Theory". Poetics. 31 (5–6): 305–327. doi:10.1016/S0304-422X(03)00035-4.
  72. Senekal, B. A. (2012). "Die Afrikaanse literêre sisteem: ʼn Eksperimentele benadering met behulp van Sosiale-netwerk-analise (SNA)". LitNet Akademies. 9: 3.
  73. Lotker, Zvi (2021), "Machine Narrative", Analyzing Narratives in Social Networks, Cham: Springer International Publishing, pp. 283–298, doi:10.1007/978-3-030-68299-6_18, ISBN   978-3-030-68298-9, S2CID   241976819, archived from the original on 2023-02-04, retrieved 2022-03-16
  74. Podolny, J. M.; Baron, J. N. (1997). "Resources and relationships: Social networks and mobility in the workplace". American Sociological Review. 62 (5): 673–693. CiteSeerX   10.1.1.114.6822 . doi:10.2307/2657354. JSTOR   2657354.
  75. Park, Semin; Grosser, Travis J.; Roebuck, Adam A.; Mathieu, John E. (3 February 2020). "Understanding Work Teams From a Network Perspective: A Review and Future Research Directions". Journal of Management. 46 (6): 1002–1028. doi: 10.1177/0149206320901573 .
  76. Lee, J.; Kim, S. (2011). "Exploring the role of social networks in affective organizational commitment: Network centrality, strength of ties, and structural holes". The American Review of Public Administration. 41 (2): 205–223. doi:10.1177/0275074010373803. S2CID   145641976.
  77. Bowler, W. M.; Brass, D. J. (2011). "Relational correlates of interpersonal citizenship behaviour: A social network perspective". Journal of Applied Psychology. 91 (1): 70–82. CiteSeerX   10.1.1.516.8746 . doi:10.1037/0021-9010.91.1.70. PMID   16435939.
  78. 1 2 3 (Claridge, 2018).
  79. 1 2 Koley, Gaurav; Deshmukh, Jayati; Srinivasa, Srinath (2020). "Social Capital as Engagement and Belief Revision". In Aref, Samin; Bontcheva, Kalina; Braghieri, Marco; Dignum, Frank; Giannotti, Fosca; Grisolia, Francesco; Pedreschi, Dino (eds.). Social Informatics. Lecture Notes in Computer Science. Vol. 12467. Cham: Springer International Publishing. pp. 137–151. doi:10.1007/978-3-030-60975-7_11. ISBN   978-3-030-60975-7. S2CID   222233101. Archived from the original on 2021-06-09. Retrieved 2021-06-09.
  80. Sebastián, Valenzuela; Namsu Park; Kerk F. Kee (2009). "Is There Social Capital in a Social Network Site? Facebook Use and College Students' Life Satisfaction, Trust, and Participation". Journal of Computer-Mediated Communication. 14 (4): 875–901. doi: 10.1111/j.1083-6101.2009.01474.x .
  81. Wang, Hua & Barry Wellman (2010). "Social Connectivity in America: Changes in Adult Friendship Network Size from 2002 to 2007". American Behavioral Scientist. 53 (8): 1148–1169. doi:10.1177/0002764209356247. S2CID   144525876.
  82. Gaudeul, Alexia; Giannetti, Caterina (2013). "The role of reciprocation in social network formation, with an application to LiveJournal". Social Networks. 35 (3): 317–330. doi:10.1016/j.socnet.2013.03.003. ISSN   0378-8733.
  83. Mill, John (1909). Principles of Political Economy. Library of Economics and Liberty: William J Ashley.
  84. Csermely, Peter (July 2017). "The Network Concept of Creativity and Deep Thinking: Applications to Social Opinion Formation and Talent Support". Gifted Child Quarterly. 61 (3): 194–201. arXiv: 1702.06342 . doi:10.1177/0016986217701832. ISSN   0016-9862. S2CID   14419926.
  85. Gardner, Heidi; Eccles, Robert (2011). "Eden McCallum: A Network Based Consulting Firm". Harvard Business School Review.
  86. Xiao, Zhixing; Tsui, Anne (2007). "When Brokers May Not Work: The Cultural Contingency of Social Archived 2016-09-14 at the Wayback Machine Capital in Chinese High-tech Firms". Administrative Science Quarterly.
  87. Garton, Laura; Haythornthwaite, Caroline; Wellman, Barry (23 June 2006). "Studying Online Social Networks". Journal of Computer-Mediated Communication. 3 (1): 0. doi:10.1111/j.1083-6101.1997.tb00062.x. S2CID   29051307.
  88. Wei, Wei; Joseph, Kenneth; Liu, Huan; Carley, Kathleen M. (2016). "Exploring Characteristics of Suspended Users and Network Stability on Twitter". Social Network Analysis and Mining. 6: 51. doi:10.1007/s13278-016-0358-5. S2CID   18520393.
  89. Bojanowski, Michał; Corten, Rense (2014-10-01). "Measuring segregation in social networks". Social Networks. 39: 14–32. doi:10.1016/j.socnet.2014.04.001. ISSN   0378-8733.

Further reading

Organizations

Peer-reviewed journals

Textbooks and educational resources

Data sets