Interdependent networks

Last updated

The study of interdependent networks is a subfield of network science dealing with phenomena caused by the interactions between complex networks. Though there may be a wide variety of interactions between networks, dependency focuses on the scenario in which the nodes in one network require support from nodes in another network. [1]

Contents

Motivation for the model

In nature, networks rarely appear in isolation. They are typically elements in larger systems and can have non-trivial effects on one another. For example, infrastructure networks exhibit interdependency to a large degree. The power stations which form the nodes of the power grid require fuel delivered via a network of roads or pipes and are also controlled via the nodes of communications network. Though the transportation network does not depend on the power network to function, the communications network does. Thus the deactivation of a critical number of nodes in either the power network or the communication network can lead to a series of cascading failures across the system with potentially catastrophic repercussions. If the two networks were treated in isolation, this important feedback effect would not be seen and predictions of network robustness would be greatly overestimated.

Links in a standard network represent connectivity, providing information about how one node can be reached from another. Dependency links represent a need for support from one node to another. This relationship is often, though not necessarily, mutual and thus the links can be directed or undirected. Crucially, a node loses its ability to function as soon as the node it is dependent on ceases to function while it may not be so severely effected by losing a node it is connected to.

Comparison to many-particle systems in physics

In statistical physics, phase transitions can only appear in many particle systems. Though phase transitions are well known in network science, in single networks they are second order only. With the introduction of internetwork dependency, first order transitions emerge. This is a new phenomenon and one with profound implications for systems engineering. Where system dissolution takes place after steady (if steep) degradation for second order transitions, the existence of a first order transition implies that the system can go from a relatively healthy state to complete collapse with no advanced warning.

Examples

See also

Related Research Articles

A complex system is a system composed of many components which may interact with each other. Examples of complex systems are Earth's global climate, organisms, the human brain, infrastructure such as power grid, transportation or communication systems, complex software and electronic systems, social and economic organizations, an ecosystem, a living cell, and ultimately the entire universe.

<span class="mw-page-title-main">Scale-free network</span> Network whose degree distribution follows a power law

A scale-free network is a network whose degree distribution follows a power law, at least asymptotically. That is, the fraction P(k) of nodes in the network having k connections to other nodes goes for large values of k as

<span class="mw-page-title-main">Cascading failure</span> Systemic risk of failure

A cascading failure is a failure in a system of interconnected parts in which the failure of one or few parts leads to the failure of other parts, growing progressively as a result of positive feedback. This can occur when a single part fails, increasing the probability that other portions of the system fail. Such a failure may happen in many types of systems, including power transmission, computer networking, finance, transportation systems, organisms, the human body, and ecosystems.

<span class="mw-page-title-main">Gene regulatory network</span> Collection of molecular regulators

A generegulatory network (GRN) is a collection of molecular regulators that interact with each other and with other substances in the cell to govern the gene expression levels of mRNA and proteins which, in turn, determine the function of the cell. GRN also play a central role in morphogenesis, the creation of body structures, which in turn is central to evolutionary developmental biology (evo-devo).

<span class="mw-page-title-main">Wireless mesh network</span> Radio nodes organized in a mesh topology

A wireless mesh network (WMN) is a communications network made up of radio nodes organized in a mesh topology. It can also be a form of wireless ad hoc network.

<span class="mw-page-title-main">Network theory</span> Study of graphs as a representation of relations between discrete objects

In mathematics, computer science and network science, network theory is a part of graph theory. It defines networks as graphs where the nodes or edges possess attributes. Network theory analyses these networks over the symmetric relations or asymmetric relations between their (discrete) components.

<span class="mw-page-title-main">Small-world network</span> Graph where most nodes are reachable in a small number of steps

A small-world network is a graph characterized by a high clustering coefficient and low distances. On an example of social network, high clustering implies the high probability that two friends of one person are friends themselves. The low distances, on the other hand, mean that there is a short chain of social connections between any two people. Specifically, a small-world network is defined to be a network where the typical distance L between two randomly chosen nodes grows proportionally to the logarithm of the number of nodes N in the network, that is:

<span class="mw-page-title-main">Complex network</span> Network with non-trivial topological features

In the context of network theory, a complex network is a graph (network) with non-trivial topological features—features that do not occur in simple networks such as lattices or random graphs but often occur in networks representing real systems. The study of complex networks is a young and active area of scientific research inspired largely by empirical findings of real-world networks such as computer networks, biological networks, technological networks, brain networks, climate networks and social networks.

<span class="mw-page-title-main">U.S. critical infrastructure protection</span>

In the U.S., critical infrastructure protection (CIP) is a concept that relates to the preparedness and response to serious incidents that involve the critical infrastructure of a region or the nation. The American Presidential directive PDD-63 of May 1998 set up a national program of "Critical Infrastructure Protection". In 2014 the NIST Cybersecurity Framework was published after further presidential directives.

A wireless ad hoc network (WANET) or mobile ad hoc network (MANET) is a decentralized type of wireless network. The network is ad hoc because it does not rely on a pre-existing infrastructure, such as routers or wireless access points. Instead, each node participates in routing by forwarding data for other nodes. The determination of which nodes forward data is made dynamically on the basis of network connectivity and the routing algorithm in use.

<span class="mw-page-title-main">Community structure</span> Concept in graph theory

In the study of complex networks, a network is said to have community structure if the nodes of the network can be easily grouped into sets of nodes such that each set of nodes is densely connected internally. In the particular case of non-overlapping community finding, this implies that the network divides naturally into groups of nodes with dense connections internally and sparser connections between groups. But overlapping communities are also allowed. The more general definition is based on the principle that pairs of nodes are more likely to be connected if they are both members of the same community(ies), and less likely to be connected if they do not share communities. A related but different problem is community search, where the goal is to find a community that a certain vertex belongs to.

<span class="mw-page-title-main">Fractal dimension on networks</span>

Fractal analysis is useful in the study of complex networks, present in both natural and artificial systems such as computer systems, brain and social networks, allowing further development of the field in network science.

<span class="mw-page-title-main">Complex interdependence</span>

Complex interdependence in international relations and international political economy is a concept put forth by Robert Keohane and Joseph Nye in the 1970s to describe the emerging nature of the global political economy. The concept entails that relations between states are becoming increasingly deep and complex. These increasingly complex webs of economic interdependence undermine state power and elevate the influence of transnational non-state actors. These complex relationships can be explored through both the liberal and realism lenses and can later explain the debate of power from complex interdependence.

<span class="mw-page-title-main">Boolean network</span> Discrete set of boolean variables

A Boolean network consists of a discrete set of boolean variables each of which has a Boolean function assigned to it which takes inputs from a subset of those variables and output that determines the state of the variable it is assigned to. This set of functions in effect determines a topology (connectivity) on the set of variables, which then become nodes in a network. Usually, the dynamics of the system is taken as a discrete time series where the state of the entire network at time t+1 is determined by evaluating each variable's function on the state of the network at time t. This may be done synchronously or asynchronously.

An important question in statistical mechanics is the dependence of model behaviour on the dimension of the system. The shortcut model was introduced in the course of studying this dependence. The model interpolates between discrete regular lattices of integer dimension.

<span class="mw-page-title-main">Network science</span> Academic field

Network science is an academic field which studies complex networks such as telecommunication networks, computer networks, biological networks, cognitive and semantic networks, and social networks, considering distinct elements or actors represented by nodes and the connections between the elements or actors as links. The field draws on theories and methods including graph theory from mathematics, statistical mechanics from physics, data mining and information visualization from computer science, inferential modeling from statistics, and social structure from sociology. The United States National Research Council defines network science as "the study of network representations of physical, biological, and social phenomena leading to predictive models of these phenomena."

<span class="mw-page-title-main">Hierarchical network model</span>

Hierarchical network models are iterative algorithms for creating networks which are able to reproduce the unique properties of the scale-free topology and the high clustering of the nodes at the same time. These characteristics are widely observed in nature, from biology to language to some social networks.

Rigidity theory, or topological constraint theory, is a tool for predicting properties of complex networks based on their composition. It was introduced by James Charles Phillips in 1979 and 1981, and refined by Michael Thorpe in 1983. Inspired by the study of the stability of mechanical trusses as pioneered by James Clerk Maxwell, and by the seminal work on glass structure done by William Houlder Zachariasen, this theory reduces complex molecular networks to nodes constrained by rods, thus filtering out microscopic details that ultimately don't affect macroscopic properties. An equivalent theory was developed by P.K. Gupta A.R. Cooper in 1990, where rather than nodes representing atoms, they represented unit polytopes. An example of this would be the SiO tetrahedra in pure glassy silica. This style of analysis has applications in biology and chemistry, such as understanding adaptability in protein-protein interaction networks. Rigidity theory applied to the molecular networks arising from phenotypical expression of certain diseases may provide insights regarding their structure and function.

<span class="mw-page-title-main">Multidimensional network</span> Networks with multiple kinds of relations

In network theory, multidimensional networks, a special type of multilayer network, are networks with multiple kinds of relations. Increasingly sophisticated attempts to model real-world systems as multidimensional networks have yielded valuable insight in the fields of social network analysis, economics, urban and international transport, ecology, psychology, medicine, biology, commerce, climatology, physics, computational neuroscience, operations management, and finance.

<span class="mw-page-title-main">Bianconi–Barabási model</span>

The Bianconi–Barabási model is a model in network science that explains the growth of complex evolving networks. This model can explain that nodes with different characteristics acquire links at different rates. It predicts that a node's growth depends on its fitness and can calculate the degree distribution. The Bianconi–Barabási model is named after its inventors Ginestra Bianconi and Albert-László Barabási. This model is a variant of the Barabási–Albert model. The model can be mapped to a Bose gas and this mapping can predict a topological phase transition between a "rich-get-richer" phase and a "winner-takes-all" phase.

References

  1. Kivelä, Mikko; Arenas, Alex; Barthelemy, Marc; Gleeson, James P.; Moreno, Yamir; Porter, Mason A. (2014). "Multilayer networks". Journal of Complex Networks. 2 (3): 203–271. arXiv: 1309.7233 . doi:10.1093/comnet/cnu016. S2CID   11390956 . Retrieved 8 March 2015.
  2. Rinaldi, S.M.; Peerenboom, J.P.; Kelly, T.K. (2001). "Identifying, understanding, and analyzing critical infrastructure interdependencies". IEEE Control Systems Magazine. 21 (6): 11–25. doi:10.1109/37.969131. ISSN   0272-1708.
  3. RACHEL FRAZIN AND REBECCA BEITSCH (2021). "The Hill". Archived from the original on 2021-05-07. Retrieved 2021-05-07.{{cite journal}}: Cite journal requires |journal= (help)
  4. Gu, Chang-Gui; Zou, Sheng-Rong; Xu, Xiu-Lian; Qu, Yan-Qing; Jiang, Yu-Mei; He, Da Ren; Liu, Hong-Kun; Zhou, Tao (2011). "Onset of cooperation between layered networks" (PDF). Physical Review E. 84 (2): 026101. Bibcode:2011PhRvE..84b6101G. doi:10.1103/PhysRevE.84.026101. ISSN   1539-3755. PMID   21929058.
  5. Pocock, M. J. O.; Evans, D. M.; Memmott, J. (2012). "The Robustness and Restoration of a Network of Ecological Networks" (PDF). Science. 335 (6071): 973–977. Bibcode:2012Sci...335..973P. doi:10.1126/science.1214915. ISSN   0036-8075. PMID   22363009. S2CID   206537963.
  6. Donges, J. F.; Schultz, H. C. H.; Marwan, N.; Zou, Y.; Kurths, J. (2011). "Investigating the topology of interacting networks". The European Physical Journal B. 84 (4): 635–651. arXiv: 1102.3067 . Bibcode:2011EPJB...84..635D. doi:10.1140/epjb/e2011-10795-8. ISSN   1434-6028. S2CID   18374885.