Telecommunications network

Last updated

A telecommunications network is a group of nodes interconnected by telecommunications links that are used to exchange messages between the nodes. The links may use a variety of technologies based on the methodologies of circuit switching, message switching, or packet switching, to pass messages and signals.

Contents

Multiple nodes may cooperate to pass the message from an originating node to the destination node, via multiple network hops. For this routing function, each node in the network is assigned a network address for identification and locating it on the network. The collection of addresses in the network is called the address space of the network.

Examples of telecommunications networks include computer networks, the Internet, the public switched telephone network (PSTN), the global Telex network, the aeronautical ACARS network, [1] and the wireless radio networks of cell phone telecommunication providers.

Network structure

In general, every telecommunications network conceptually consists of three parts, or planes (so-called because they can be thought of as being and often are, separate overlay networks):

Data networks

Data networks are used extensively throughout the world for communication between individuals and organizations. Data networks can be connected to allow users seamless access to resources that are hosted outside of the particular provider they are connected to. The Internet is the best example of the internetworking of many data networks from different organizations.

Terminals attached to IP networks like the Internet are addressed using IP addresses. Protocols of the Internet protocol suite (TCP/IP) provide the control and routing of messages across the and IP data network. There are many different network structures that IP can be used across to efficiently route messages, for example:

There are three features that differentiate MANs from LANs or WANs:

  1. The area of the network size is between LANs and WANs. The MAN will have a physical area between 5 and 50 km in diameter. [2]
  2. MANs do not generally belong to a single organization. The equipment that interconnects the network, the links, and the MAN itself are often owned by an association or a network provider that provides or leases the service to others. [2]
  3. A MAN is a means for sharing resources at high speeds within the network. It often provides connections to WAN networks for access to resources outside the scope of the MAN. [2]

Data center networks also rely highly on TCP/IP for communication across machines. They connect thousands of servers, are designed to be highly robust, provide low latency and high bandwidth. Data center network topology plays a significant role in determining the level of failure resiliency, ease of incremental expansion, communication bandwidth and latency. [3]

Capacity and speed

In analogy to the improvements in the speed and capacity of digital computers, provided by advances in semiconductor technology and expressed in the bi-yearly doubling of transistor density, which is described empirically by Moore's law, the capacity and speed of telecommunications networks have followed similar advances, for similar reasons. In telecommunication, this is expressed in Edholm's law, proposed by and named after Phil Edholm in 2004. [4] This empirical law holds that the bandwidth of telecommunication networks doubles every 18 months, which has proven to be true since the 1970s. [4] [5] The trend is evident in the Internet, [4] cellular (mobile), wireless and wired local area networks (LANs), and personal area networks. [5] This development is the consequence of rapid advances in the development of metal-oxide-semiconductor technology. [6]

See also

Related Research Articles

<span class="mw-page-title-main">Local area network</span> Computer network that connects devices over a limited area

A local area network (LAN) is a computer network that interconnects computers within a limited area such as a residence, school, laboratory, university campus or office building. By contrast, a wide area network (WAN) not only covers a larger geographic distance, but also generally involves leased telecommunication circuits.

Multiprotocol Label Switching (MPLS) is a routing technique in telecommunications networks that directs data from one node to the next based on labels rather than network addresses. Whereas network addresses identify endpoints the labels identify established paths between endpoints. MPLS can encapsulate packets of various network protocols, hence the multiprotocol component of the name. MPLS supports a range of access technologies, including T1/E1, ATM, Frame Relay, and DSL.

<span class="mw-page-title-main">Wireless network</span> Computer network not fully connected by cables

A wireless network is a computer network that uses wireless data connections between network nodes. Wireless networking allows homes, telecommunications networks and business installations to avoid the costly process of introducing cables into a building, or as a connection between various equipment locations. Admin telecommunications networks are generally implemented and administered using radio communication. This implementation takes place at the physical level (layer) of the OSI model network structure.

<span class="mw-page-title-main">Wide area network</span> Computer network that connects devices across a large distance and area

A wide area network (WAN) is a telecommunications network that extends over a large geographic area. Wide area networks are often established with leased telecommunication circuits.

<span class="mw-page-title-main">Frame Relay</span> Wide area network technology

Frame Relay is a standardized wide area network (WAN) technology that specifies the physical and data link layers of digital telecommunications channels using a packet switching methodology. Originally designed for transport across Integrated Services Digital Network (ISDN) infrastructure, it may be used today in the context of many other network interfaces.

Telephony is the field of technology involving the development, application, and deployment of telecommunication services for the purpose of electronic transmission of voice, fax, or data, between distant parties. The history of telephony is intimately linked to the invention and development of the telephone.

Voice over Internet Protocol (VoIP), also called IP telephony, is a method and group of technologies for voice calls for the delivery of voice communication sessions over Internet Protocol (IP) networks, such as the Internet.

A virtual private network (VPN) is a mechanism for creating a secure connection between a computing device and a computer network, or between two networks, using an insecure communication medium such as the public Internet.

Network congestion in data networking and queueing theory is the reduced quality of service that occurs when a network node or link is carrying more data than it can handle. Typical effects include queueing delay, packet loss or the blocking of new connections. A consequence of congestion is that an incremental increase in offered load leads either only to a small increase or even a decrease in network throughput.

Internet traffic is the flow of data within the entire Internet, or in certain network links of its constituent networks. Common traffic measurements are total volume, in units of multiples of the byte, or as transmission rates in bytes per certain time units.

In telecommunications networks, a node is either a redistribution point or a communication endpoint. The definition of a node depends on the network and protocol layer referred to. A physical network node is an electronic device that is attached to a network, and is capable of creating, receiving, or transmitting information over a communication channel. A passive distribution point such as a distribution frame or patch panel is consequently not a node.

An overlay network is a computer network that is layered on top of another logical network. The concept of overlay networking is distinct from the traditional model of OSI layered networks, and almost always assumes that the underlay network is an IP network of some kind.

A public data network (PDN) is a network established and operated by a telecommunications administration, or a recognized private operating agency, for the specific purpose of providing data transmission services for the public.

<span class="mw-page-title-main">History of telecommunication</span> Aspect of history

The history of telecommunication began with the use of smoke signals and drums in Africa, Asia, and the Americas. In the 1790s, the first fixed semaphore systems emerged in Europe. However, it was not until the 1830s that electrical telecommunication systems started to appear. This article details the history of telecommunication and the individuals who helped make telecommunication systems what they are today. The history of telecommunication is an important part of the larger history of communication.

<span class="mw-page-title-main">Computer network</span> Network that allows computers to share resources and communicate with each other

A computer network is a set of computers sharing resources located on or provided by network nodes. Computers use common communication protocols over digital interconnections to communicate with each other. These interconnections are made up of telecommunication network technologies based on physically wired, optical, and wireless radio-frequency methods that may be arranged in a variety of network topologies.

Bandwidth management is the process of measuring and controlling the communications on a network link, to avoid filling the link to capacity or overfilling the link, which would result in network congestion and poor performance of the network. Bandwidth is described by bit rate and measured in units of bits per second (bit/s) or bytes per second (B/s).

Edholm's law, proposed by and named after Phil Edholm, refers to the observation that the three categories of telecommunication, namely wireless (mobile), nomadic and wired networks (fixed), are in lockstep and gradually converging. Edholm's law also holds that data rates for these telecommunications categories increase on similar exponential curves, with the slower rates trailing the faster ones by a predictable time lag. Edholm's law predicts that the bandwidth and data rates double every 18 months, which has proven to be true since the 1970s. The trend is evident in the cases of Internet, cellular (mobile), wireless LAN and wireless personal area networks.

In computing, bandwidth is the maximum rate of data transfer across a given path. Bandwidth may be characterized as network bandwidth, data bandwidth, or digital bandwidth.

<span class="mw-page-title-main">Telecommunications</span> Transmission of information electromagnetically

Telecommunication, often used in its plural form, is the transmission of information by various types of technologies over wire, radio, optical, or other electromagnetic systems. It has its origin in the desire of humans for communication over a distance greater than that feasible with the human voice, but with a similar scale of expediency; thus, slow systems are excluded from the field.

In digital communications networks, packet processing refers to the wide variety of algorithms that are applied to a packet of data or information as it moves through the various network elements of a communications network. With the increased performance of network interfaces, there is a corresponding need for faster packet processing.

References

  1. "Telecommunication Network - Types of Telecommunication Networks". Archived from the original on 2014-07-15. Retrieved 2014-07-14.[ self-published source? ]
  2. 1 2 3 "Metropolitan Area Network (MAN)". Erg.abdn.ac.uk. Archived from the original on 2015-10-10. Retrieved 2013-06-15.
  3. Noormohammadpour, Mohammad; Raghavendra, Cauligi (28 July 2018). "Datacenter Traffic Control: Understanding Techniques and Tradeoffs". IEEE Communications Surveys & Tutorials. 20 (2): 1492–1525. arXiv: 1712.03530 . doi:10.1109/COMST.2017.2782753. S2CID   28143006.
  4. 1 2 3 Cherry, Steven (2004). "Edholm's law of bandwidth". IEEE Spectrum. 41 (7): 58–60. doi:10.1109/MSPEC.2004.1309810. S2CID   27580722.
  5. 1 2 Deng, Wei; Mahmoudi, Reza; van Roermund, Arthur (2012). Time Multiplexed Beam-Forming with Space-Frequency Transformation. New York: Springer. p. 1. ISBN   9781461450450.
  6. Jindal, Renuka P. (2009). "From millibits to terabits per second and beyond – over 60 years of innovation". 2009 2nd International Workshop on Electron Devices and Semiconductor Technology. pp. 1–6. doi:10.1109/EDST.2009.5166093. ISBN   978-1-4244-3831-0. S2CID   25112828. Archived from the original on 2019-08-23. Retrieved 2019-10-14.