Time-division multiplexing

Last updated

Time-division multiplexing (TDM) is a method of transmitting and receiving independent signals over a common signal path by means of synchronized switches at each end of the transmission line so that each signal appears on the line only a fraction of time according to agreed rules, e.g. with each transmitter working in turn. It can be used when the bit rate of the transmission medium exceeds that of the signal to be transmitted. This form of signal multiplexing was developed in telecommunications for telegraphy systems in the late 19th century but found its most common application in digital telephony in the second half of the 20th century.

Contents

History

Telegraphic multiplexer, from 1922 Britannica EB1922 Telegraph - Simplified Terminal Circuit of Multiplex Printer System.jpg
Telegraphic multiplexer, from 1922 Britannica

Time-division multiplexing was first developed for applications in telegraphy to route multiple transmissions simultaneously over a single transmission line. In the 1870s, Émile Baudot developed a time-multiplexing system of multiple Hughes telegraph machines.

In 1944, the British Army used the Wireless Set No. 10 to multiplex 10 telephone conversations over a microwave relay as far as 50 miles. This allowed commanders in the field to keep in contact with the staff in England across the English Channel. [1]

In 1953, a 24-channel time-division multiplexer was placed in commercial operation by RCA Communications to send audio information between RCA's facility on Broad Street, New York, their transmitting station at Rocky Point and the receiving station at Riverhead, Long Island, New York. The communication was by a microwave system throughout Long Island. The experimental TDM system was developed by RCA Laboratories between 1950 and 1953. [2]

In 1962, engineers from Bell Labs developed the first D1 channel banks, which combined 24 digitized voice calls over a four-wire copper trunk line between Bell central office analogue switches. A channel bank at each end of the line allowed the single line to carry short portions, each 18000 of a second, of up to 24 voice calls, in turn. The discrete signals on the trunk line carried 1.544 Mbit/s divided into 8000 separate frames per second, each composed of 24 contiguous octets and one framing bit. Each octet in a frame carried a single telephone call in turn. Thus each of 24 voice calls was encoded into two constant-bit-rate streams of 64 kbit/s (one in each direction), and converted back to conventional analog signals by the complementary equipment on the receiving end of the trunk line. [3]

Technology

Time-division multiplexing is used primarily for digital signals but may be applied in analog multiplexing, as above, in which two or more signals or bit streams are transferred appearing simultaneously as sub-channels in one communication channel, but are physically taking turns on the channel. [4] The time domain is divided into several recurrent time slots of fixed length, one for each sub-channel. A sample byte or data block of sub-channel 1 is transmitted during time slot 1, sub-channel 2 during time slot 2, etc. One TDM frame consists of one time slot per sub-channel, and usually a synchronization channel and sometimes an error correction channel. After all of these the cycle starts again with a new frame, starting with the second sample, byte or data block from sub-channel 1, etc.

Application examples

TDM can be further extended into the time-division multiple access (TDMA) scheme, where several stations connected to the same physical medium, for example sharing the same frequency channel, can communicate. Application examples include:

Multiplexed digital transmission

In circuit-switched networks, such as the public switched telephone network (PSTN), it is desirable to transmit multiple subscriber calls over the same transmission medium to effectively utilize the bandwidth of the medium. [5] TDM allows transmitting and receiving telephone switches to create channels (tributaries) within a transmission stream. A standard DS0 voice signal has a data bit rate of 64 kbit/s. [5] [6] A TDM circuit runs at a much higher signal bandwidth, permitting the bandwidth to be divided into time frames (time slots) for each voice signal which is multiplexed onto the line by the transmitter. If the TDM frame consists of n voice frames, the line bandwidth is n*64 kbit/s. [5]

Each voice time slot in the TDM frame is called a channel. In European systems, standard TDM frames contain 30 digital voice channels (E1), and in American systems (T1), they contain 24 channels. Both standards also contain extra bits (or bit time slots) for signaling and synchronization bits. [5]

Multiplexing more than 24 or 30 digital voice channels is called higher order multiplexing. Higher order multiplexing is accomplished by multiplexing the standard TDM frames. For example, a European 120 channel TDM frame is formed by multiplexing four standard 30 channel TDM frames. At each higher order multiplex, four TDM frames from the immediate lower order are combined, creating multiplexes with a bandwidth of n*64 kbit/s, where n = 120, 480, 1920, etc. [5]

Telecommunications systems

There are three types of synchronous TDM: T1, SONET/SDH, and ISDN. [7]

Plesiochronous digital hierarchy (PDH) was developed as a standard for multiplexing higher order frames. PDH created larger numbers of channels by multiplexing the standard Europeans 30 channel TDM frames. This solution worked for a while; however PDH suffered from several inherent drawbacks which ultimately resulted in the development of the Synchronous Digital Hierarchy (SDH). The requirements which drove the development of SDH were these: [5] [6]

SDH has become the primary transmission protocol in most PSTN networks. It was developed to allow streams 1.544 Mbit/s and above to be multiplexed, in order to create larger SDH frames known as Synchronous Transport Modules (STM). The STM-1 frame consists of smaller streams that are multiplexed to create a 155.52 Mbit/s frame. SDH can also multiplex packet based frames e.g. Ethernet, PPP and ATM. [5] [6]

While SDH is considered to be a transmission protocol (Layer 1 in the OSI Reference Model), it also performs some switching functions, as stated in the third bullet point requirement listed above. [5] The most common SDH Networking functions are these:

SDH network functions are connected using high-speed optic fibre. Optic fibre uses light pulses to transmit data and is therefore extremely fast. Modern optic fibre transmission makes use of wavelength-division multiplexing (WDM) where signals transmitted across the fibre are transmitted at different wavelengths, creating additional channels for transmission. This increases the speed and capacity of the link, which in turn reduces both unit and total costs. [5] [6]

Statistical version

Statistical time-division multiplexing (STDM) is an advanced version of TDM in which both the address of the terminal and the data itself are transmitted together for better routing. Using STDM allows bandwidth to be split over one line. Many college and corporate campuses use this type of TDM to distribute bandwidth.

On a 10-Mbit line entering a network, STDM can be used to provide 178 terminals with a dedicated 56k connection (178 * 56k = 9.96 Mb). A more common use however is to only grant the bandwidth when that much is needed. STDM does not reserve a time slot for each terminal, rather it assigns a slot when the terminal is requiring data to be sent or received.

In its primary form, TDM is used for circuit mode communication with a fixed number of channels and constant bandwidth per channel. Bandwidth reservation distinguishes time-division multiplexing from statistical multiplexing such as statistical time-division multiplexing. In pure TDM, the time slots are recurrent in a fixed order and pre-allocated to the channels, rather than scheduled on a packet-by-packet basis.

In dynamic TDMA, a scheduling algorithm dynamically reserves a variable number of time slots in each frame to variable bit-rate data streams, based on the traffic demand of each data stream. [8] Dynamic TDMA is used in:

Asynchronous time-division multiplexing (ATDM), [7] is an alternative nomenclature in which STDM designates synchronous time-division multiplexing, the older method that uses fixed time slots.

See also

Related Research Articles

In telecommunications, asynchronous communication is transmission of data, generally without the use of an external clock signal, where data can be transmitted intermittently rather than in a steady stream. Any timing required to recover data from the communication symbols is encoded within the symbols.

The plesiochronous digital hierarchy (PDH) is a technology used in telecommunications networks to transport large quantities of data over digital transport equipment such as fibre optic and microwave radio systems. The term plesiochronous is derived from Greek plēsios, meaning near, and chronos, time, and refers to the fact that PDH networks run in a state where different parts of the network are nearly, but not quite perfectly, synchronized.

<span class="mw-page-title-main">Synchronous optical networking</span> Standardized protocol

Synchronous Optical Networking (SONET) and Synchronous Digital Hierarchy (SDH) are standardized protocols that transfer multiple digital bit streams synchronously over optical fiber using lasers or highly coherent light from light-emitting diodes (LEDs). At low transmission rates data can also be transferred via an electrical interface. The method was developed to replace the plesiochronous digital hierarchy (PDH) system for transporting large amounts of telephone calls and data traffic over the same fiber without the problems of synchronization.

A frame is a digital data transmission unit in computer networking and telecommunication. In packet switched systems, a frame is a simple container for a single network packet. In other telecommunications systems, a frame is a repeating structure supporting time-division multiplexing.

<span class="mw-page-title-main">Multiplexing</span> Method of combining multiple signals into one signal over a shared medium

In telecommunications and computer networking, multiplexing is a method by which multiple analog or digital signals are combined into one signal over a shared medium. The aim is to share a scarce resource – a physical transmission medium. For example, in telecommunications, several telephone calls may be carried using one wire. Multiplexing originated in telegraphy in the 1870s, and is now widely applied in communications. In telephony, George Owen Squier is credited with the development of telephone carrier multiplexing in 1910.

<span class="mw-page-title-main">T-carrier</span> Carrier system for digital transmission of multiplexed telephone calls.

The T-carrier is a member of the series of carrier systems developed by AT&T Bell Laboratories for digital transmission of multiplexed telephone calls.

The E-carrier is a member of the series of carrier systems developed for digital transmission of many simultaneous telephone calls by time-division multiplexing. The European Conference of Postal and Telecommunications Administrations (CEPT) originally standardised the E-carrier system, which revised and improved the earlier American T-carrier technology, and this has now been adopted by the International Telecommunication Union Telecommunication Standardization Sector (ITU-T). It was widely used in almost all countries outside the US, Canada, and Japan. E-carrier deployments have steadily been replaced by Ethernet as telecommunication networks transition towards all IP.

<span class="mw-page-title-main">Frequency-division multiplexing</span> Signal processing technique in telecommunications

In telecommunications, frequency-division multiplexing (FDM) is a technique by which the total bandwidth available in a communication medium is divided into a series of non-overlapping frequency bands, each of which is used to carry a separate signal. This allows a single transmission medium such as a microwave radio link, cable or optical fiber to be shared by multiple independent signals. Another use is to carry separate serial bits or segments of a higher rate signal in parallel.

In telecommunications and computer networks, a channel access method or multiple access method allows more than two terminals connected to the same transmission medium to transmit over it and to share its capacity. Examples of shared physical media are wireless networks, bus networks, ring networks and point-to-point links operating in half-duplex mode.

cdmaOne First CDMA-based digital cellular technology

Interim Standard 95 (IS-95) was the first digital cellular technology that used code-division multiple access (CDMA). It was developed by Qualcomm and later adopted as a standard by the Telecommunications Industry Association in TIA/EIA/IS-95 release published in 1995. The proprietary name for IS-95 is cdmaOne.

The public switched telephone network (PSTN) is the aggregate of the world's telephone networks that are operated by national, regional, or local telephony operators. It provides infrastructure and services for public telephony. The PSTN consists of telephone lines, fiber-optic cables, microwave transmission links, cellular networks, communications satellites, and undersea telephone cables interconnected by switching centers, such as central offices, network tandems, and international gateways, which allow telephone users to communicate with each other.

Digital Signal 1 is a T-carrier signaling scheme devised by Bell Labs. DS1 is the primary digital telephone standard used in the United States, Canada and Japan and is able to transmit up to 24 multiplexed voice and data calls over telephone lines. E-carrier is used in place of T-carrier outside the United States, Canada, Japan, and South Korea. DS1 is the logical bit pattern used over a physical T1 line; in practice, the terms DS1 and T1 are often used interchangeably.

In communications systems, robbed-bit signaling (RBS) is a scheme to provide maintenance and line signaling services on many T1 digital carrier circuits using channel-associated signaling (CAS). The T1 carrier circuit is a type of dedicated circuit currently employed in North America and Japan.

In computer networking and telecommunications, TDM over IP (TDMoIP) is the emulation of time-division multiplexing (TDM) over a packet-switched network (PSN). TDM refers to a T1, E1, T3 or E3 signal, while the PSN is based either on IP or MPLS or on raw Ethernet. A related technology is circuit emulation, which enables transport of TDM traffic over cell-based (ATM) networks.

<span class="mw-page-title-main">Passive optical network</span> Technology used to provide broadband to the end consumer via fiber

A passive optical network (PON) is a fiber-optic telecommunications network that uses only unpowered devices to carry signals, as opposed to electronic equipment. In practice, PONs are typically used for the last mile between Internet service providers (ISP) and their customers. In this use, a PON has a point-to-multipoint topology in which an ISP uses a single device to serve many end-user sites using a system such as 10G-PON or GPON. In this one-to-many topology, a single fiber serving many sites branches into multiple fibers through a passive splitter, and those fibers can each serve multiple sites through further splitters. The light from the ISP is divided through the splitters to reach all the customer sites, and light from the customer sites is combined into the single fiber. Many fiber ISPs prefer this system.

The STM-1 is the SDH ITU-T fiber optic network transmission standard. It has a bit rate of 155.52 Mbit/s. Higher levels go up by a factor of 4 at a time: the other currently supported levels are STM-4, STM-16, STM-64 and STM-256. Above STM-256 wavelength-division multiplexing (WDM) is commonly used in submarine cabling.

<span class="mw-page-title-main">Statistical time-division multiplexing</span>

Statistical multiplexing is a type of communication link sharing, very similar to dynamic bandwidth allocation (DBA). In statistical multiplexing, a communication channel is divided into an arbitrary number of variable bitrate digital channels or data streams. The link sharing is adapted to the instantaneous traffic demands of the data streams that are transferred over each channel. This is an alternative to creating a fixed sharing of a link, such as in general time division multiplexing (TDM) and frequency division multiplexing (FDM). When performed correctly, statistical multiplexing can provide a link utilization improvement, called the statistical multiplexing gain.

Virtual concatenation (VCAT) is an inverse multiplexing technique creating a large capacity payload container distributed over multiple smaller capacity TDM signals. These signals may be transported or routed independently. Virtual concatenation has been defined for SONET/SDH, OTN and PDH path signals.

The STM-4 is a SDH ITU-T fiber optic network transmission standard. It has a bit rate of 622.080 Mbit/s.

The pulse-code modulation (PCM) technology was patented and developed in France in 1938, but could not be used because suitable technology was not available until World War II. This came about with the arrival of digital systems in the 1960s when improving the performance of communications networks became a real possibility. However, this technology was not completely adopted until the mid-1970s, due to the large amount of analog systems already in place and the high cost of digital systems, as semiconductors were very expensive. PCM's initial goal was to convert an analog voice telephone channel into a digital one based on the sampling theorem.

References

  1. Wireless Set No. 10
  2. US 2919308 "Time Division Multiplex System for Signals of Different Bandwidth"
  3. María Isabel Gandía Carriedo (August 31, 1998). "ATM: Origins and State of the Art". Universidad Politécnica de Madrid. Archived from the original on June 23, 2006. Retrieved September 23, 2009.
  4. Kourtis, A.; Dangkis, K.; Zacharapoulos, V.; Mantakas, C. (1993). "Analogue time division multiplexing". International Journal of Electronics. 74 (6). Taylor & Francis: 901–907. doi:10.1080/00207219308925891.
  5. 1 2 3 4 5 6 7 8 9 10 11 Hanrahan, H.E. (2005). Integrated Digital Communications. Johannesburg, South Africa: School of Electrical and Information Engineering, University of the Witwatersrand.
  6. 1 2 3 4 "Understanding Telecommunications". Ericsson . Archived from the original on April 13, 2004.
  7. 1 2 White, Curt (2007). Data Communications and Computer Networks . Boston, MA: Thomson Course Technology. pp.  143–152. ISBN   978-1-4188-3610-8.
  8. Guowang Miao; Jens Zander; Ki Won Sung; Ben Slimane (2016). Fundamentals of Mobile Data Networks. Cambridge University Press. ISBN   978-1107143210.