Frequency-division multiplexing

Last updated

In telecommunications, frequency-division multiplexing (FDM) is a technique by which the total bandwidth available in a communication medium is divided into a series of non-overlapping frequency bands, each of which is used to carry a separate signal. This allows a single transmission medium such as a cable or optical fiber to be shared by multiple independent signals. Another use is to carry separate serial bits or segments of a higher rate signal in parallel.

Bandwidth (signal processing) difference between the upper and lower frequencies in a continuous set of frequencies

Bandwidth is the difference between the upper and lower frequencies in a continuous band of frequencies. It is typically measured in hertz, and depending on context, may specifically refer to passband bandwidth or baseband bandwidth. Passband bandwidth is the difference between the upper and lower cutoff frequencies of, for example, a band-pass filter, a communication channel, or a signal spectrum. Baseband bandwidth applies to a low-pass filter or baseband signal; the bandwidth is equal to its upper cutoff frequency.

Communication channel refers either to a physical transmission medium such as a wire, or to a logical connection

A communication channel or simply channel refers either to a physical transmission medium such as a wire, or to a logical connection over a multiplexed medium such as a radio channel in telecommunications and computer networking. A channel is used to convey an information signal, for example a digital bit stream, from one or several senders to one or several receivers. A channel has a certain capacity for transmitting information, often measured by its bandwidth in Hz or its data rate in bits per second.

Optical fiber light-conducting fiber

An optical fiber is a flexible, transparent fiber made by drawing glass (silica) or plastic to a diameter slightly thicker than that of a human hair. Optical fibers are used most often as a means to transmit light between the two ends of the fiber and find wide usage in fiber-optic communications, where they permit transmission over longer distances and at higher bandwidths than electrical cables. Fibers are used instead of metal wires because signals travel along them with less loss; in addition, fibers are immune to electromagnetic interference, a problem from which metal wires suffer excessively. Fibers are also used for illumination and imaging, and are often wrapped in bundles so they may be used to carry light into, or images out of confined spaces, as in the case of a fiberscope. Specially designed fibers are also used for a variety of other applications, some of them being fiber optic sensors and fiber lasers.

Contents

The most natural example of frequency-division multiplexing is radio and television broadcasting, in which multiple radio signals at different frequencies pass through the air at the same time. Another example is cable television, in which many television channels are carried simultaneously on a single cable. FDM is also used by telephone systems to transmit multiple telephone calls through high capacity trunklines, communications satellites to transmit multiple channels of data on uplink and downlink radio beams, and broadband DSL modems to transmit large amounts of computer data through twisted pair telephone lines, among many other uses.

Radio technology of using radio waves to carry information

Radio is the technology of using radio waves to carry information, such as sound and images, by systematically modulating properties of electromagnetic energy waves transmitted through space, such as their amplitude, frequency, phase, or pulse width. When radio waves strike an electrical conductor, the oscillating fields induce an alternating current in the conductor. The information in the waves can be extracted and transformed back into its original form.

Broadcasting distribution of audio and video content to a dispersed audience via any audio or visual mass communications medium

Broadcasting is the distribution of audio or video content to a dispersed audience via any electronic mass communications medium, but typically one using the electromagnetic spectrum, in a one-to-many model. Broadcasting began with AM radio, which came into popular use around 1920 with the spread of vacuum tube radio transmitters and receivers. Before this, all forms of electronic communication were one-to-one, with the message intended for a single recipient. The term broadcasting evolved from its use as the agricultural method of sowing seeds in a field by casting them broadly about. It was later adopted for describing the widespread distribution of information by printed materials or by telegraph. Examples applying it to "one-to-many" radio transmissions of an individual station to multiple listeners appeared as early as 1898.

Cable television television content transmitted via signals on coaxial cable

Cable television is a system of delivering television programming to consumers via radio frequency (RF) signals transmitted through coaxial cables, or in more recent systems, light pulses through fiber-optic cables. This contrasts with broadcast television, in which the television signal is transmitted over the air by radio waves and received by a television antenna attached to the television; or satellite television, in which the television signal is transmitted by a communications satellite orbiting the Earth and received by a satellite dish on the roof. FM radio programming, high-speed Internet, telephone services, and similar non-television services may also be provided through these cables. Analog television was standard in the 20th century, but since the 2000s, cable systems have been upgraded to digital cable operation.

An analogous technique called wavelength division multiplexing is used in fiber-optic communication, in which multiple channels of data are transmitted over a single optical fiber using different wavelengths (frequencies) of light.

Fiber-optic communication method of transmitting information from one place to another by sending pulses of light through an optical fiber

Fiber-optic communication is a method of transmitting information from one place to another by sending pulses of light through an optical fiber. The light forms an electromagnetic carrier wave that is modulated to carry information. Fiber is preferred over electrical cabling when high bandwidth, long distance, or immunity to electromagnetic interference are required.

Wavelength spatial period of the wave—the distance over which the waves shape repeats, and thus the inverse of the spatial frequency

In physics, the wavelength is the spatial period of a periodic wave—the distance over which the wave's shape repeats. It is thus the inverse of the spatial frequency. Wavelength is usually determined by considering the distance between consecutive corresponding points of the same phase, such as crests, troughs, or zero crossings and is a characteristic of both traveling waves and standing waves, as well as other spatial wave patterns. Wavelength is commonly designated by the Greek letter lambda (λ). The term wavelength is also sometimes applied to modulated waves, and to the sinusoidal envelopes of modulated waves or waves formed by interference of several sinusoids.

How it works

The passband of an FDM channel carrying digital data, modulated by QPSK quadrature phase-shift keying. Screenshot-fdm-75-random-am.png
The passband of an FDM channel carrying digital data, modulated by QPSK quadrature phase-shift keying.

The multiple separate information (modulation) signals that are sent over an FDM system, such as the video signals of the television channels that are sent over a cable TV system, are called baseband signals. At the source end, for each frequency channel, an electronic oscillator generates a carrier signal, a steady oscillating waveform at a single frequency that serves to "carry" information. The carrier is much higher in frequency than the baseband signal. The carrier signal and the baseband signal are combined in a modulator circuit. The modulator alters some aspect of the carrier signal, such as its amplitude, frequency, or phase, with the baseband signal, "piggybacking" the data onto the carrier.

Baseband signal that has a very narrow frequency range near zero

Baseband is a signal that has a near-zero frequency range, i.e. a spectral magnitude that is nonzero only for frequencies in the vicinity of the origin and negligible elsewhere. In telecommunications and signal processing, baseband signals are transmitted without modulation, that is, without any shift in the range of frequencies of the signal. Baseband has a low-frequency—contained within the bandwidth frequency close to 0 hertz up to a higher cut-off frequency. Baseband can be synonymous with lowpass or non-modulated, and is differentiated from passband, bandpass, carrier-modulated, intermediate frequency, or radio frequency (RF).

Electronic oscillator electronic circuit that produces a repetitive, oscillating electronic signal, often a sine wave or a square wave

An electronic oscillator is an electronic circuit that produces a periodic, oscillating electronic signal, often a sine wave or a square wave. Oscillators convert direct current (DC) from a power supply to an alternating current (AC) signal. They are widely used in many electronic devices. Common examples of signals generated by oscillators include signals broadcast by radio and television transmitters, clock signals that regulate computers and quartz clocks, and the sounds produced by electronic beepers and video games.

Frequency is the number of occurrences of a repeating event per unit of time. It is also referred to as temporal frequency, which emphasizes the contrast to spatial frequency and angular frequency. The period is the duration of time of one cycle in a repeating event, so the period is the reciprocal of the frequency. For example: if a newborn baby's heart beats at a frequency of 120 times a minute, its period—the time interval between beats—is half a second. Frequency is an important parameter used in science and engineering to specify the rate of oscillatory and vibratory phenomena, such as mechanical vibrations, audio signals (sound), radio waves, and light.

The result of modulating (mixing) the carrier with the baseband signal is to generate sub-frequencies near the carrier frequency, at the sum (fC + fB) and difference (fCfB) of the frequencies. The information from the modulated signal is carried in sidebands on each side of the carrier frequency. Therefore, all the information carried by the channel is in a narrow band of frequencies clustered around the carrier frequency, this is called the passband of the channel.

In electronics and telecommunications, modulation is the process of varying one or more properties of a periodic waveform, called the carrier signal, with a modulating signal that typically contains information to be transmitted. Most radio systems in the 20th century used frequency modulation (FM) or amplitude modulation (AM) for radio broadcast.

In telecommunication systems, Carrier frequency is a technical term used to indicate:

Sideband

In radio communications, a sideband is a band of frequencies higher than or lower than the carrier frequency, containing power as a result of the modulation process. The sidebands carry the information (modulation) transmitted by the signal. The sidebands consist of all the Fourier components of the modulated signal except the carrier. All forms of modulation produce sidebands.

Similarly, additional baseband signals are used to modulate carriers at other frequencies, creating other channels of information. The carriers are spaced far enough apart in frequency that the band of frequencies occupied by each channel, the passbands of the separate channels, do not overlap. All the channels are sent through the transmission medium, such as a coaxial cable, optical fiber, or through the air using a radio transmitter. As long as the channel frequencies are spaced far enough apart that none of the passbands overlap, the separate channels will not interfere with each other. Thus the available bandwidth is divided into "slots" or channels, each of which can carry a separate modulated signal.

For example, the coaxial cable used by cable television systems has a bandwidth of about 1000 MHz, but the passband of each television channel is only 6 MHz wide, so there is room for many channels on the cable (in modern digital cable systems each channel in turn is subdivided into subchannels and can carry up to 10 digital television channels).

At the destination end of the cable or fiber, or the radio receiver, for each channel a local oscillator produces a signal at the carrier frequency of that channel, that is mixed with the incoming modulated signal. The frequencies subtract, producing the baseband signal for that channel again. This is called demodulation. The resulting baseband signal is filtered out of the other frequencies and output to the user.

Telephone

For long distance telephone connections, 20th century telephone companies used L-carrier and similar coaxial cable systems carrying thousands of voice circuits multiplexed in multiple stages by channel banks.

For shorter distances, cheaper balanced pair cables were used for various systems including Bell System K- and N-Carrier. Those cables didn't allow such large bandwidths, so only 12 voice channels (double sideband) and later 24 (single sideband) were multiplexed into four wires, one pair for each direction with repeaters every several miles, approximately 10 km. See 12-channel carrier system. By the end of the 20th Century, FDM voice circuits had become rare. Modern telephone systems employ digital transmission, in which time-division multiplexing (TDM) is used instead of FDM.

Since the late 20th century digital subscriber lines (DSL) have used a Discrete multitone (DMT) system to divide their spectrum into frequency channels.

The concept corresponding to frequency-division multiplexing in the optical domain is known as wavelength-division multiplexing.

Group and supergroup

A once commonplace FDM system, used for example in L-carrier, uses crystal filters which operate at the 8 MHz range to form a Channel Group of 12 channels, 48 kHz bandwidth in the range 8140 to 8188 kHz by selecting carriers in the range 8140 to 8184 kHz selecting upper sideband this group can then be translated to the standard range 60 to 108 kHz by a carrier of 8248 kHz. Such systems are used in DTL (Direct To Line) and DFSG (Directly formed super group).

132 voice channels (2SG + 1G) can be formed using DTL plane the modulation and frequency plan are given in FIG1 and FIG2 use of DTL technique allows the formation of a maximum of 132 voice channels that can be placed direct to line. DTL eliminates group and super group equipment.

DFSG can take similar steps where a direct formation of a number of super groups can be obtained in the 8 kHz the DFSG also eliminates group equipment and can offer:

Both DTL and DFSG can fit the requirement of low density system (using DTL) and higher density system (using DFSG). The DFSG terminal is similar to DTL terminal except instead of two super groups many super groups are combined. A Mastergroup of 600 channels (10 super-groups) is an example based on DFSG.

Other examples

FDM can also be used to combine signals before final modulation onto a carrier wave. In this case the carrier signals are referred to as subcarriers: an example is stereo FM transmission, where a 38 kHz subcarrier is used to separate the left-right difference signal from the central left-right sum channel, prior to the frequency modulation of the composite signal. An analog NTSC television channel is divided into subcarrier frequencies for video, color, and audio. DSL uses different frequencies for voice and for upstream and downstream data transmission on the same conductors, which is also an example of frequency duplex.

Where frequency-division multiplexing is used as to allow multiple users to share a physical communications channel, it is called frequency-division multiple access (FDMA). [1]

FDMA is the traditional way of separating radio signals from different transmitters.

In the 1860s and 70s, several inventors attempted FDM under the names of acoustic telegraphy and harmonic telegraphy. Practical FDM was only achieved in the electronic age. Meanwhile, their efforts led to an elementary understanding of electroacoustic technology, resulting in the invention of the telephone.

See also

Related Research Articles

In telecommunications, orthogonal frequency-division multiplexing (OFDM) is a method of encoding digital data on multiple carrier frequencies. OFDM has developed into a popular scheme for wideband digital communication, used in applications such as digital television and audio broadcasting, DSL internet access, wireless networks, power line networks, and 4G mobile communications.

Single-sideband modulation refinement of amplitude modulation

In radio communications, single-sideband modulation (SSB) or single-sideband suppressed-carrier modulation (SSB-SC) is a type of modulation, used to transmit information, such as an audio signal, by radio waves. A refinement of amplitude modulation, it uses transmitter power and bandwidth more efficiently. Amplitude modulation produces an output signal the bandwidth of which is twice the maximum frequency of the original baseband signal. Single-sideband modulation avoids this bandwidth increase, and the power wasted on a carrier, at the cost of increased device complexity and more difficult tuning at the receiver.

A carrier system is a telecommunications system that transmits information, such as the voice signals of a telephone call and the video signals of television, by modulation of one or multiple carrier signals above the principal voice frequency or data rate.

Multiplexing method by which multiple analog or digital signals are combined into one signal over a shared medium

In telecommunications and computer networks, multiplexing is a method by which multiple analog or digital signals are combined into one signal over a shared medium. The aim is to share a scarce resource. For example, in telecommunications, several telephone calls may be carried using one wire. Multiplexing originated in telegraphy in the 1870s, and is now widely applied in communications. In telephony, George Owen Squier is credited with the development of telephone carrier multiplexing in 1910.

Data transmission is the transfer of data over a point-to-point or point-to-multipoint communication channel. Examples of such channels are copper wires, optical fibers, wireless communication channels, storage media and computer buses. The data are represented as an electromagnetic signal, such as an electrical voltage, radiowave, microwave, or infrared signal.

In telecommunications, broadband is wide bandwidth data transmission which transports multiple signals and traffic types. The medium can be coaxial cable, optical fiber, radio or twisted pair.

Composite video analog video transmission

Composite video is an analog video transmission that carries standard definition video typically at 480i or 576i resolution as a single channel. Video information is encoded on one channel, unlike the higher-quality S-video and the even higher-quality component video. In all of these video formats, audio is carried on a separate connection.

Frequency division multiple access (FDMA) is a channel access method used in multiple-access protocol. FDMA allows multiple users to send data through a single communication channel, such as a coaxial cable or microwave beam, by dividing the bandwidth of the channel into separate non-overlapping frequency subchannels and allocating each subchannel to a separate user. Users can send data through a subchannel by modulating it on a carrier wave at the subchannel's frequency. It is used in satellite communication systems and telephone trunklines.

A subcarrier is a sideband of a radio frequency carrier wave, which is modulated to send additional information. Examples include the provision of colour in a black and white television system or the provision of stereo in a monophonic radio broadcast. There is no physical difference between a carrier and a subcarrier; the "sub" implies that it has been derived from a carrier, which has been amplitude modulated by a steady signal and has a constant frequency relation to it.

Pilot signal

In telecommunications, a pilot signal is a signal, usually a single frequency, transmitted over a communications system for supervisory, control, equalization, continuity, synchronization, or reference purposes.

ANSI T1.413 is a technical standard that defines the requirements for the single asymmetric digital subscriber line (ADSL) for the interface between the telecommunications network and the customer installation in terms of their interaction and electrical characteristics. ADSL allows the provision of voiceband services including plain old telephone service (POTS) and data services up to 56 kbit/s, and a variety of digital channels. In the direction from the network to the customer premises (downstream), the digital bearer channels may consist of full-duplex low-speed bearer channels and simpler high-speed bearer channels; in the other (upstream) direction, only low-speed bearer channels are provided.

Spectral efficiency, spectrum efficiency or bandwidth efficiency refers to the information rate that can be transmitted over a given bandwidth in a specific communication system. It is a measure of how efficiently a limited frequency spectrum is utilized by the physical layer protocol, and sometimes by the media access control.

L-carrier

The Transcontinental Cable System or L-carrier system was developed by AT&T to create a high capacity transmission facility using coaxial cable, a fairly new medium for HF to RF signal transmission invented in 1927 by Lloyd Espenschied of Bell Telephone Laboratories for long distance communications. There were six phases of development of the system, designated by the Bell System as L-1 through L-5E. Later versions, starting in the early 1960s, were hardened against the dangers of the cold war using complete placement of all terminal and repeater equipment in hardened underground vaults.

Subcarrier Multiplexing (SCM) is a method for combining (multiplexing) many different communications signals so that they can be transmitted along a single optical fiber. SCM is used in passive optical network (PON) access infrastructures as a variant of wavelength division multiplexing (WDM).

CCIR System B was the 625-line analog broadcast television system which at its peak was the system used in most countries. It is being replaced across Western Europe, part of Asia and Africa by digital broadcasting.

References

  1. White, Curt (2007). Data Communications and Computer Networks. Boston, MA: Thomson Course Technology. pp. 140–143. ISBN   1-4188-3610-9.
General