Transmission line

Last updated
Schematic of a wave moving rightward down a lossless two-wire transmission line. Black dots represent electrons, and the arrows show the electric field. Transmission line animation3.gif
Schematic of a wave moving rightward down a lossless two-wire transmission line. Black dots represent electrons, and the arrows show the electric field.
One of the most common types of transmission line, coaxial cable Coaxial cable cut.jpg
One of the most common types of transmission line, coaxial cable

In electrical engineering, a transmission line is a specialized cable or other structure designed to conduct electromagnetic waves in a contained manner. The term applies when the conductors are long enough that the wave nature of the transmission must be taken into account. This applies especially to radio-frequency engineering because the short wavelengths mean that wave phenomena arise over very short distances (this can be as short as millimetres depending on frequency). However, the theory of transmission lines was historically developed to explain phenomena on very long telegraph lines, especially submarine telegraph cables.

Contents

Transmission lines are used for purposes such as connecting radio transmitters and receivers with their antennas (they are then called feed lines or feeders), distributing cable television signals, trunklines routing calls between telephone switching centres, computer network connections and high speed computer data buses. RF engineers commonly use short pieces of transmission line, usually in the form of printed planar transmission lines, arranged in certain patterns to build circuits such as filters. These circuits, known as distributed-element circuits, are an alternative to traditional circuits using discrete capacitors and inductors.

Overview

Ordinary electrical cables suffice to carry low frequency alternating current (AC), such as mains power, which reverses direction 100 to 120 times per second, and audio signals. However, they not generally used to carry currents in the radio frequency range, [1] above about 30 kHz, because the energy tends to radiate off the cable as radio waves, causing power losses. Radio frequency currents also tend to reflect from discontinuities in the cable such as connectors and joints, and travel back down the cable toward the source. [1] [2] These reflections act as bottlenecks, preventing the signal power from reaching the destination. Transmission lines use specialized construction, and impedance matching, to carry electromagnetic signals with minimal reflections and power losses. The distinguishing feature of most transmission lines is that they have uniform cross sectional dimensions along their length, giving them a uniform impedance, called the characteristic impedance , [2] [3] [4] to prevent reflections. Types of transmission line include parallel line (ladder line, twisted pair), coaxial cable, and planar transmission lines such as stripline and microstrip. [5] [6] The higher the frequency of electromagnetic waves moving through a given cable or medium, the shorter the wavelength of the waves. Transmission lines become necessary when the transmitted frequency's wavelength is sufficiently short that the length of the cable becomes a significant part of a wavelength.

At microwave frequencies and above, power losses in transmission lines become excessive, and waveguides are used instead, [1] which function as "pipes" to confine and guide the electromagnetic waves. [6] Some sources define waveguides as a type of transmission line; [6] however, this article will not include them.

History

Mathematical analysis of the behaviour of electrical transmission lines grew out of the work of James Clerk Maxwell, Lord Kelvin, and Oliver Heaviside. In 1855, Lord Kelvin formulated a diffusion model of the current in a submarine cable. The model correctly predicted the poor performance of the 1858 trans-Atlantic submarine telegraph cable. In 1885, Heaviside published the first papers that described his analysis of propagation in cables and the modern form of the telegrapher's equations. [7]

The four terminal model

Variations on the schematic electronic symbol for a transmission line Transmission line symbols.svg
Variations on the schematic electronic symbol for a transmission line

For the purposes of analysis, an electrical transmission line can be modelled as a two-port network (also called a quadripole), as follows:

Transmission line 4 port.svg

In the simplest case, the network is assumed to be linear (i.e. the complex voltage across either port is proportional to the complex current flowing into it when there are no reflections), and the two ports are assumed to be interchangeable. If the transmission line is uniform along its length, then its behaviour is largely described by a two parameters called characteristic impedance , symbol Z0 and propagation delay , symbol . Z0 is the ratio of the complex voltage of a given wave to the complex current of the same wave at any point on the line. Typical values of Z0 are 50 or 75 ohms for a coaxial cable, about 100 ohms for a twisted pair of wires, and about 300 ohms for a common type of untwisted pair used in radio transmission. Propagation delay is proportional to the length of the transmission line and is never less than the length divided by the speed of light. Typical delays for modern communication transmission lines vary from 3.33 ns/m to 5 ns/m.

When sending power down a transmission line, it is usually desirable that as much power as possible will be absorbed by the load and as little as possible will be reflected back to the source. This can be ensured by making the load impedance equal to Z0, in which case the transmission line is said to be matched .

A transmission line is drawn as two black wires. At a distance x into the line, there is current I(x) travelling through each wire, and there is a voltage difference V(x) between the wires. If the current and voltage come from a single wave (with no reflection), then V(x) / I(x) = Z0, where Z0 is the characteristic impedance of the line. TransmissionLineDefinitions.svg
A transmission line is drawn as two black wires. At a distance x into the line, there is current I(x) travelling through each wire, and there is a voltage difference V(x) between the wires. If the current and voltage come from a single wave (with no reflection), then V(x) / I(x) = Z0, where Z0 is the characteristic impedance of the line.

Some of the power that is fed into a transmission line is lost because of its resistance. This effect is called ohmic or resistive loss (see ohmic heating). At high frequencies, another effect called dielectric loss becomes significant, adding to the losses caused by resistance. Dielectric loss is caused when the insulating material inside the transmission line absorbs energy from the alternating electric field and converts it to heat (see dielectric heating). The transmission line is modelled with a resistance (R) and inductance (L) in series with a capacitance (C) and conductance (G) in parallel. The resistance and conductance contribute to the loss in a transmission line.

The total loss of power in a transmission line is often specified in decibels per metre (dB/m), and usually depends on the frequency of the signal. The manufacturer often supplies a chart showing the loss in dB/m at a range of frequencies. A loss of 3 dB corresponds approximately to a halving of the power.

Propagation delay is often specified in units of nanoseconds per metre. While propagation delay usually depends on the frequency of the signal, transmission lines are typically operated over frequency ranges where the propagation delay is approximately constant.

Telegrapher's equations

The telegrapher's equations (or just telegraph equations) are a pair of linear differential equations which describe the voltage () and current () on an electrical transmission line with distance and time. They were developed by Oliver Heaviside who created the transmission line model, and are based on Maxwell's equations.

Schematic representation of the elementary component of a transmission line Transmission line element.svg
Schematic representation of the elementary component of a transmission line

The transmission line model is an example of the distributed-element model. It represents the transmission line as an infinite series of two-port elementary components, each representing an infinitesimally short segment of the transmission line:

The model consists of an infinite series of the elements shown in the figure, and the values of the components are specified per unit length so the picture of the component can be misleading. , , , and may also be functions of frequency. An alternative notation is to use , , and to emphasize that the values are derivatives with respect to length. These quantities can also be known as the primary line constants to distinguish from the secondary line constants derived from them, these being the propagation constant, attenuation constant and phase constant.

The line voltage and the current can be expressed in the frequency domain as

(see differential equation, angular frequency ω and imaginary unit j )

Special case of a lossless line

When the elements and are negligibly small the transmission line is considered as a lossless structure. In this hypothetical case, the model depends only on the and elements which greatly simplifies the analysis. For a lossless transmission line, the second order steady-state Telegrapher's equations are:

These are wave equations which have plane waves with equal propagation speed in the forward and reverse directions as solutions. The physical significance of this is that electromagnetic waves propagate down transmission lines and in general, there is a reflected component that interferes with the original signal. These equations are fundamental to transmission line theory.

General case of a line with losses

In the general case the loss terms, and , are both included, and the full form of the Telegrapher's equations become:

where is the (complex) propagation constant. These equations are fundamental to transmission line theory. They are also wave equations, and have solutions similar to the special case, but which are a mixture of sines and cosines with exponential decay factors. Solving for the propagation constant in terms of the primary parameters , , , and gives:

and the characteristic impedance can be expressed as

The solutions for and are:

The constants must be determined from boundary conditions. For a voltage pulse , starting at and moving in the positive  direction, then the transmitted pulse at position can be obtained by computing the Fourier Transform, , of , attenuating each frequency component by , advancing its phase by , and taking the inverse Fourier Transform. The real and imaginary parts of can be computed as

with

the right-hand expressions holding when neither , nor , nor is zero, and with

where atan2 is the everywhere-defined form of two-parameter arctangent function, with arbitrary value zero when both arguments are zero.

Alternatively, the complex square root can be evaluated algebraically, to yield:

and

with the plus or minus signs chosen opposite to the direction of the wave's motion through the conducting medium. (a is usually negative, since and are typically much smaller than and , respectively, so a is usually positive. b is always positive.)

Special, low loss case

For small losses and high frequencies, the general equations can be simplified: If and then

Since an advance in phase by is equivalent to a time delay by , can be simply computed as

Heaviside condition

The Heaviside condition is .

If R, G, L, and C are constants that are not frequency dependent and the Heaviside condition is met, then waves travel down the transmission line without dispersion distortion.

Input impedance of transmission line

Looking towards a load through a length
l
{\displaystyle \ell }
of lossless transmission line, the impedance changes as
l
{\displaystyle \ell }
increases, following the blue circle on this impedance Smith chart. (This impedance is characterized by its reflection coefficient, which is the reflected voltage divided by the incident voltage.) The blue circle, centred within the chart, is sometimes called an SWR circle (short for constant standing wave ratio). SmithChartLineLength.svg
Looking towards a load through a length of lossless transmission line, the impedance changes as increases, following the blue circle on this impedance Smith chart. (This impedance is characterized by its reflection coefficient, which is the reflected voltage divided by the incident voltage.) The blue circle, centred within the chart, is sometimes called an SWR circle (short for constant standing wave ratio ).

The characteristic impedance of a transmission line is the ratio of the amplitude of a single voltage wave to its current wave. Since most transmission lines also have a reflected wave, the characteristic impedance is generally not the impedance that is measured on the line.

The impedance measured at a given distance from the load impedance may be expressed as

,

where is the propagation constant and is the voltage reflection coefficient measured at the load end of the transmission line. Alternatively, the above formula can be rearranged to express the input impedance in terms of the load impedance rather than the load voltage reflection coefficient:

.

Input impedance of lossless transmission line

For a lossless transmission line, the propagation constant is purely imaginary, , so the above formulas can be rewritten as

where is the wavenumber.

In calculating the wavelength is generally different inside the transmission line to what it would be in free-space. Consequently, the velocity factor of the material the transmission line is made of needs to be taken into account when doing such a calculation.

Special cases of lossless transmission lines

Half wave length

For the special case where where n is an integer (meaning that the length of the line is a multiple of half a wavelength), the expression reduces to the load impedance so that

for all This includes the case when , meaning that the length of the transmission line is negligibly small compared to the wavelength. The physical significance of this is that the transmission line can be ignored (i.e. treated as a wire) in either case.

Quarter wave length

For the case where the length of the line is one quarter wavelength long, or an odd multiple of a quarter wavelength long, the input impedance becomes

Matched load

Another special case is when the load impedance is equal to the characteristic impedance of the line (i.e. the line is matched), in which case the impedance reduces to the characteristic impedance of the line so that

for all and all .

Short

Standing waves on a transmission line with an open-circuit load (top), and a short-circuit load (bottom). Black dots represent electrons, and the arrows show the electric field. Transmission line animation open short2.gif
Standing waves on a transmission line with an open-circuit load (top), and a short-circuit load (bottom). Black dots represent electrons, and the arrows show the electric field.

For the case of a shorted load (i.e. ), the input impedance is purely imaginary and a periodic function of position and wavelength (frequency)

Open

For the case of an open load (i.e. ), the input impedance is once again imaginary and periodic

Matrix parameters

The simulation of transmission lines embedded into larger systems generally utilize admittance parameters (Y matrix), impedance parameters (Z matrix), and/or scattering parameters (S matrix) that embodies the full transmission line model needed to support the simulation.

Admittance parameters

Admittance (Y) parameters may be defined by applying a fixed voltage to one port (V1) of a transmission line with the other end shorted to ground and measuring the resulting current running into each port (I1, I2) [8] [9] and computing the admittance on each port as a ratio of I/V The admittance parameter Y11 is I1/V1, and the admittance parameter Y12 is I2/V1. Since transmission lines are electrically passive and symmetric devices, Y12 = Y21, and Y11 = Y22.

For lossless and lossy transmission lines respectively, the Y parameter matrix is as follows: [10] [11]

Impedance parameters

Impedance (Z) parameter may defines by applying a fixed current into one port (I1) of a transmission line with the other port open and measuring the resulting voltage on each port (V1, V2) [8] [9] and computing the impedance parameter Z11 is V1/I1, and the impedance parameter Z12 is V2/I1. Since transmission lines are electrically passive and symmetric devices, V12 = V21, and V11 = V22.

In the Y and Z matrix definitions, and . [12] Unlike ideal lumped 2 port elements (resistors, capacitors, inductors, etc.) which do not have defined Z parameters, transmission lines have an internal path to ground, which permits the definition of Z parameters.

For lossless and lossy transmission lines respectively, the Z parameter matrix is as follows: [10] [11]

Scattering parameters

Scattering (S) matrix parameters model the electrical behavior of the transmission line with matched loads at each termination. [10]

For lossless and lossy transmission lines respectively, the S parameter matrix is as follows, [13] [14] using standard hyperbolic to circular complex translations.

Variable definitions

In all matrix parameters above, the following variable definitions apply:

= characteristic impedance

Zp = port impedance, or termination impedance

= the propagation constant per unit length

= attenuation constant in nepers per unit length

= wave number or phase constant radians per unit length

= frequency radians / second

= Speed of propagation

= wave length in unit length

L = inductance per unit length

C = capacitance per unit length

= effective dielectric constant

= 299,792,458 meters / second = Speed of light in a vacuum

Practical types

Coaxial cable

Coaxial lines confine virtually all of the electromagnetic wave to the area inside the cable. Coaxial lines can therefore be bent and twisted (subject to limits) without negative effects, and they can be strapped to conductive supports without inducing unwanted currents in them. In radio-frequency applications up to a few gigahertz, the wave propagates in the transverse electric and magnetic mode (TEM) only, which means that the electric and magnetic fields are both perpendicular to the direction of propagation (the electric field is radial, and the magnetic field is circumferential). However, at frequencies for which the wavelength (in the dielectric) is significantly shorter than the circumference of the cable other transverse modes can propagate. These modes are classified into two groups, transverse electric (TE) and transverse magnetic (TM) waveguide modes. When more than one mode can exist, bends and other irregularities in the cable geometry can cause power to be transferred from one mode to another.

The most common use for coaxial cables is for television and other signals with bandwidth of multiple megahertz. In the middle 20th century they carried long distance telephone connections.

Planar lines

Planar transmission lines are transmission lines with conductors, or in some cases dielectric strips, that are flat, ribbon-shaped lines. They are used to interconnect components on printed circuits and integrated circuits working at microwave frequencies because the planar type fits in well with the manufacturing methods for these components. Several forms of planar transmission lines exist.

Microstrip

A type of transmission line called a cage line, used for high power, low frequency applications. It functions similarly to a large coaxial cable. This example is the antenna feed line for a longwave radio transmitter in Poland, which operates at a frequency of 225 kHz and a power of 1200 kW. Solec Kujawski longwave antenna feeder.jpg
A type of transmission line called a cage line, used for high power, low frequency applications. It functions similarly to a large coaxial cable. This example is the antenna feed line for a longwave radio transmitter in Poland, which operates at a frequency of 225 kHz and a power of 1200 kW.

A microstrip circuit uses a thin flat conductor which is parallel to a ground plane. Microstrip can be made by having a strip of copper on one side of a printed circuit board (PCB) or ceramic substrate while the other side is a continuous ground plane. The width of the strip, the thickness of the insulating layer (PCB or ceramic) and the dielectric constant of the insulating layer determine the characteristic impedance. Microstrip is an open structure whereas coaxial cable is a closed structure.

Stripline

A stripline circuit uses a flat strip of metal which is sandwiched between two parallel ground planes. The insulating material of the substrate forms a dielectric. The width of the strip, the thickness of the substrate and the relative permittivity of the substrate determine the characteristic impedance of the strip which is a transmission line.

Coplanar waveguide

A coplanar waveguide consists of a center strip and two adjacent outer conductors, all three of them flat structures that are deposited onto the same insulating substrate and thus are located in the same plane ("coplanar"). The width of the center conductor, the distance between inner and outer conductors, and the relative permittivity of the substrate determine the characteristic impedance of the coplanar transmission line.

Balanced lines

A balanced line is a transmission line consisting of two conductors of the same type, and equal impedance to ground and other circuits. There are many formats of balanced lines, amongst the most common are twisted pair, star quad and twin-lead.

Twisted pair

Twisted pairs are commonly used for terrestrial telephone communications. In such cables, many pairs are grouped together in a single cable, from two to several thousand. [15] The format is also used for data network distribution inside buildings, but the cable is more expensive because the transmission line parameters are tightly controlled.

Star quad

Star quad is a four-conductor cable in which all four conductors are twisted together around the cable axis. It is sometimes used for two circuits, such as 4-wire telephony and other telecommunications applications. In this configuration each pair uses two non-adjacent conductors. Other times it is used for a single, balanced line, such as audio applications and 2-wire telephony. In this configuration two non-adjacent conductors are terminated together at both ends of the cable, and the other two conductors are also terminated together.

When used for two circuits, crosstalk is reduced relative to cables with two separate twisted pairs.

When used for a single, balanced line, magnetic interference picked up by the cable arrives as a virtually perfect common mode signal, which is easily removed by coupling transformers.

The combined benefits of twisting, balanced signalling, and quadrupole pattern give outstanding noise immunity, especially advantageous for low signal level applications such as microphone cables, even when installed very close to a power cable. [16] [17] The disadvantage is that star quad, in combining two conductors, typically has double the capacitance of similar two-conductor twisted and shielded audio cable. High capacitance causes increasing distortion and greater loss of high frequencies as distance increases. [18] [19]

Twin-lead

Twin-lead consists of a pair of conductors held apart by a continuous insulator. By holding the conductors a known distance apart, the geometry is fixed and the line characteristics are reliably consistent. It is lower loss than coaxial cable because the characteristic impedance of twin-lead is generally higher than coaxial cable, leading to lower resistive losses due to the reduced current. However, it is more susceptible to interference.

Lecher lines

Lecher lines are a form of parallel conductor that can be used at UHF for creating resonant circuits. They are a convenient practical format that fills the gap between lumped components (used at HF/VHF) and resonant cavities (used at UHF/SHF).

Single-wire line

Unbalanced lines were formerly much used for telegraph transmission, but this form of communication has now fallen into disuse. Cables are similar to twisted pair in that many cores are bundled into the same cable but only one conductor is provided per circuit and there is no twisting. All the circuits on the same route use a common path for the return current (earth return). There is a power transmission version of single-wire earth return in use in many locations.

General applications

Signal transfer

Electrical transmission lines are very widely used to transmit high frequency signals over long or short distances with minimum power loss. One familiar example is the down lead from a TV or radio aerial to the receiver.

Transmission line circuits

A large variety of circuits can also be constructed with transmission lines including impedance matching circuits, filters, power dividers and directional couplers.

Stepped transmission line

A simple example of stepped transmission line consisting of three segments Segments.jpg
A simple example of stepped transmission line consisting of three segments

A stepped transmission line is used for broad range impedance matching. It can be considered as multiple transmission line segments connected in series, with the characteristic impedance of each individual element to be . [20] The input impedance can be obtained from the successive application of the chain relation

where is the wave number of the -th transmission line segment and is the length of this segment, and is the front-end impedance that loads the -th segment.

The impedance transformation circle along a transmission line whose characteristic impedance
Z
0
,
i
{\displaystyle Z_{\mathrm {0,i} }}
is smaller than that of the input cable
Z
0
{\displaystyle Z_{0}}
. And as a result, the impedance curve is off-centred towards the
-
x
{\displaystyle -x}
axis. Conversely, if
Z
0
,
i
>
Z
0
{\displaystyle Z_{\mathrm {0,i} }>Z_{0}}
, the impedance curve should be off-centred towards the
+
x
{\displaystyle +x}
axis. PolarSmith.jpg
The impedance transformation circle along a transmission line whose characteristic impedance is smaller than that of the input cable . And as a result, the impedance curve is off-centred towards the axis. Conversely, if , the impedance curve should be off-centred towards the axis.

Because the characteristic impedance of each transmission line segment is often different from the impedance of the fourth, input cable (only shown as an arrow marked on the left side of the diagram above), the impedance transformation circle is off-centred along the axis of the Smith Chart whose impedance representation is usually normalized against .

Approximating lumped elements

At higher frequencies, the reactive parasitic effects of real world lumped elements, including inductors and capacitors, limits their usefulness. [21] Therefore, it is sometimes useful to approximate the electrical characteristics of inductors and capacitors with transmission lines at the higher frequencies using Richards' Transformations and then substitute the transmission lines for the lumped elements. [22] [23]

More accurate forms of multimode high frequency inductor modeling with transmission lines exist for advanced designers. [24]

Stub filters

If a short-circuited or open-circuited transmission line is wired in parallel with a line used to transfer signals from point A to point B, then it will function as a filter. The method for making stubs is similar to the method for using Lecher lines for crude frequency measurement, but it is 'working backwards'. One method recommended in the RSGB's radiocommunication handbook is to take an open-circuited length of transmission line wired in parallel with the feeder delivering signals from an aerial. By cutting the free end of the transmission line, a minimum in the strength of the signal observed at a receiver can be found. At this stage the stub filter will reject this frequency and the odd harmonics, but if the free end of the stub is shorted then the stub will become a filter rejecting the even harmonics.

Wideband filters can be achieved using multiple stubs. However, this is a somewhat dated technique. Much more compact filters can be made with other methods such as parallel-line resonators.

Pulse generation

Transmission lines are used as pulse generators. By charging the transmission line and then discharging it into a resistive load, a rectangular pulse equal in length to twice the electrical length of the line can be obtained, although with half the voltage. A Blumlein transmission line is a related pulse forming device that overcomes this limitation. These are sometimes used as the pulsed power sources for radar transmitters and other devices.

Sound

The theory of sound wave propagation is very similar mathematically to that of electromagnetic waves, so techniques from transmission line theory are also used to build structures to conduct acoustic waves; and these are called acoustic transmission lines.

See also

Related Research Articles

<span class="mw-page-title-main">Characteristic impedance</span> Property of an electrical circuit

The characteristic impedance or surge impedance (usually written Z0) of a uniform transmission line is the ratio of the amplitudes of voltage and current of a wave travelling in one direction along the line in the absence of reflections in the other direction. Equivalently, it can be defined as the input impedance of a transmission line when its length is infinite. Characteristic impedance is determined by the geometry and materials of the transmission line and, for a uniform line, is not dependent on its length. The SI unit of characteristic impedance is the ohm.

The propagation constant of a sinusoidal electromagnetic wave is a measure of the change undergone by the amplitude and phase of the wave as it propagates in a given direction. The quantity being measured can be the voltage, the current in a circuit, or a field vector such as electric field strength or flux density. The propagation constant itself measures the dimensionless change in magnitude or phase per unit length. In the context of two-port networks and their cascades, propagation constant measures the change undergone by the source quantity as it propagates from one port to the next.

<span class="mw-page-title-main">Standing wave ratio</span> Measure used in radio engineering and telecommunications

In radio engineering and telecommunications, standing wave ratio (SWR) is a measure of impedance matching of loads to the characteristic impedance of a transmission line or waveguide. Impedance mismatches result in standing waves along the transmission line, and SWR is defined as the ratio of the partial standing wave's amplitude at an antinode (maximum) to the amplitude at a node (minimum) along the line.

The wave impedance of an electromagnetic wave is the ratio of the transverse components of the electric and magnetic fields. For a transverse-electric-magnetic (TEM) plane wave traveling through a homogeneous medium, the wave impedance is everywhere equal to the intrinsic impedance of the medium. In particular, for a plane wave travelling through empty space, the wave impedance is equal to the impedance of free space. The symbol Z is used to represent it and it is expressed in units of ohms. The symbol η (eta) may be used instead of Z for wave impedance to avoid confusion with electrical impedance.

<span class="mw-page-title-main">Impedance matching</span> Adjusting input/output impedances of an electrical circuit for some purpose

In electrical engineering, impedance matching is the practice of designing or adjusting the input impedance or output impedance of an electrical device for a desired value. Often, the desired value is selected to maximize power transfer or minimize signal reflection. For example, impedance matching typically is used to improve power transfer from a radio transmitter via the interconnecting transmission line to the antenna. Signals on a transmission line will be transmitted without reflections if the transmission line is terminated with a matching impedance.

<span class="mw-page-title-main">Smith chart</span> Electrical engineers graphical calculator

The Smith chart, is a graphical calculator or nomogram designed for electrical and electronics engineers specializing in radio frequency (RF) engineering to assist in solving problems with transmission lines and matching circuits.

In physics, a wave vector is a vector used in describing a wave, with a typical unit being cycle per metre. It has a magnitude and direction. Its magnitude is the wavenumber of the wave, and its direction is perpendicular to the wavefront. In isotropic media, this is also the direction of wave propagation.

A transmission line which meets the Heaviside condition, named for Oliver Heaviside (1850–1925), and certain other conditions can transmit signals without dispersion and without distortion. The importance of the Heaviside condition is that it showed the possibility of dispersionless transmission of telegraph signals.In some cases, the performance of a transmission line can be improved by adding inductive loading to the cable.

Scattering parameters or S-parameters describe the electrical behavior of linear electrical networks when undergoing various steady state stimuli by electrical signals.

<span class="mw-page-title-main">Stub (electronics)</span> Short electrical transmission line

In microwave and radio-frequency engineering, a stub or resonant stub is a length of transmission line or waveguide that is connected at one end only. The free end of the stub is either left open-circuit, or short-circuited. Neglecting transmission line losses, the input impedance of the stub is purely reactive; either capacitive or inductive, depending on the electrical length of the stub, and on whether it is open or short circuit. Stubs may thus function as capacitors, inductors and resonant circuits at radio frequencies.

The telegrapher's equations are a set of two coupled, linear equations that predict the voltage and current distributions on a linear electrical transmission line. The equations are important because they allow transmission lines to be analyzed using circuit theory. The equations and their solutions are applicable from 0 Hz to frequencies at which the transmission line structure can support higher order non-TEM modes. The equations can be expressed in both the time domain and the frequency domain. In the time domain the independent variables are distance and time. The resulting time domain equations are partial differential equations of both time and distance. In the frequency domain the independent variables are distance and either frequency, or complex frequency, The frequency domain variables can be taken as the Laplace transform or Fourier transform of the time domain variables or they can be taken to be phasors. The resulting frequency domain equations are ordinary differential equations of distance. An advantage of the frequency domain approach is that differential operators in the time domain become algebraic operations in frequency domain.

<span class="mw-page-title-main">Zobel network</span>

Zobel networks are a type of filter section based on the image-impedance design principle. They are named after Otto Zobel of Bell Labs, who published a much-referenced paper on image filters in 1923. The distinguishing feature of Zobel networks is that the input impedance is fixed in the design independently of the transfer function. This characteristic is achieved at the expense of a much higher component count compared to other types of filter sections. The impedance would normally be specified to be constant and purely resistive. For this reason, Zobel networks are also known as constant resistance networks. However, any impedance achievable with discrete components is possible.

<span class="mw-page-title-main">Π pad</span> An attenuator whose circuit components are in the shape of the Greek letter pi

The Π pad is a specific type of attenuator circuit in electronics whereby the topology of the circuit is formed in the shape of the Greek capital letter pi (Π).

Image impedance is a concept used in electronic network design and analysis and most especially in filter design. The term image impedance applies to the impedance seen looking into a port of a network. Usually a two-port network is implied but the concept can be extended to networks with more than two ports. The definition of image impedance for a two-port network is the impedance, Zi 1, seen looking into port 1 when port 2 is terminated with the image impedance, Zi 2, for port 2. In general, the image impedances of ports 1 and 2 will not be equal unless the network is symmetrical with respect to the ports.

Constant k filters, also k-type filters, are a type of electronic filter designed using the image method. They are the original and simplest filters produced by this methodology and consist of a ladder network of identical sections of passive components. Historically, they are the first filters that could approach the ideal filter frequency response to within any prescribed limit with the addition of a sufficient number of sections. However, they are rarely considered for a modern design, the principles behind them having been superseded by other methodologies which are more accurate in their prediction of filter response.

A quarter-wave impedance transformer, often written as λ/4 impedance transformer, is a transmission line or waveguide used in electrical engineering of length one-quarter wavelength (λ), terminated with some known impedance. It presents at its input the dual of the impedance with which it is terminated.

<span class="mw-page-title-main">Reflections of signals on conducting lines</span> Electrical waves in return direction

A signal travelling along an electrical transmission line will be partly, or wholly, reflected back in the opposite direction when the travelling signal encounters a discontinuity in the characteristic impedance of the line, or if the far end of the line is not terminated in its characteristic impedance. This can happen, for instance, if two lengths of dissimilar transmission lines are joined.

<span class="mw-page-title-main">Primary line constants</span> Parameters of transmission lines

The primary line constants are parameters that describe the characteristics of conductive transmission lines, such as pairs of copper wires, in terms of the physical electrical properties of the line. The primary line constants are only relevant to transmission lines and are to be contrasted with the secondary line constants, which can be derived from them, and are more generally applicable. The secondary line constants can be used, for instance, to compare the characteristics of a waveguide to a copper line, whereas the primary constants have no meaning for a waveguide.

<span class="mw-page-title-main">Substrate-integrated waveguide</span> Waveguide formed by posts inserted in a dielectric substrate

A substrate-integrated waveguide (SIW) is a synthetic rectangular electromagnetic waveguide formed in a dielectric substrate by densely arraying metallized posts or via holes that connect the upper and lower metal plates of the substrate. The waveguide can be easily fabricated with low-cost mass-production using through-hole techniques, where the post walls consists of via fences. SIW is known to have similar guided wave and mode characteristics to conventional rectangular waveguide with equivalent guide wavelength.

<span class="mw-page-title-main">Performance and modelling of AC transmission</span>

Performance modelling is the abstraction of a real system into a simplified representation to enable the prediction of performance. The creation of a model can provide insight into how a proposed or actual system will or does work. This can, however, point towards different things to people belonging to different fields of work.

References

Part of this article was derived from Federal Standard 1037C.

  1. 1 2 3 Jackman, Shawn M.; Matt Swartz; Marcus Burton; Thomas W. Head (2011). CWDP Certified Wireless Design Professional Official Study Guide: Exam PW0-250. John Wiley & Sons. pp. Ch. 7. ISBN   978-1118041611.
  2. 1 2 Oklobdzija, Vojin G.; Ram K. Krishnamurthy (2006). High-Performance Energy-Efficient Microprocessor Design. Springer Science & Business Media. p. 297. ISBN   978-0387340470.
  3. Guru, Bhag Singh; Hüseyin R. Hızıroğlu (2004). Electromagnetic Field Theory Fundamentals, 2nd Ed. Cambridge Univ. Press. pp. 422–423. ISBN   978-1139451925.
  4. Schmitt, Ron Schmitt (2002). Electromagnetics Explained: A Handbook for Wireless/ RF, EMC, and High-Speed Electronics . Newnes. pp.  153. ISBN   978-0080505237.
  5. Carr, Joseph J. (1997). Microwave & Wireless Communications Technology. USA: Newnes. pp. 46–47. ISBN   978-0750697071.
  6. 1 2 3 Raisanen, Antti V.; Arto Lehto (2003). Radio Engineering for Wireless Communication and Sensor Applications. Artech House. pp. 35–37. ISBN   978-1580536691.
  7. Weber, Ernst; Nebeker, Frederik (1994). The Evolution of Electrical Engineering. Piscataway, New Jersey: IEEE Press. ISBN   0-7803-1066-7.
  8. 1 2 Leon, Benjamin J.; Wintz, Paul A. (1970). Basic Linear Networks for Electrical and Electronics Engineer. US: Holt, Rinehart, and Winston. pp. 127 to 129. ISBN   0030783259.{{cite book}}: CS1 maint: date and year (link)
  9. 1 2 Pozar, David M. (2013). Microwave Engineering (4th ed.). Hoboken, NJ, US: John Wiley & Sones, Inc. pp. 174, 175. ISBN   978-81-265-4190-4.{{cite book}}: CS1 maint: date and year (link)
  10. 1 2 3 Matthaei, George L.; Young, Leo; Jones, E. M. T. (1984). Microwave Filters, Impudence-Matching Networks, and Coupling Structures. 610 Washington Street, Dedham, Massachusetts, US: Artech House, Inc. (published 1985). p. 30. ISBN   0-89006-099-1.{{cite book}}: CS1 maint: date and year (link) CS1 maint: location (link)
  11. 1 2 Drakos, Nikos; Hennecke, Marcus; Moore, Ross; Swan, Herb (November 22, 2013). "Transmission Line". Quite Universal Circuit Simulator (Qucs).{{cite web}}: CS1 maint: url-status (link)
  12. Pozar, David M. (1998). Microwave Engineering (2nd ed.). Canada: John Wiley & Sons, Inc. p. 192. ISBN   0-471-17096-8.{{cite book}}: CS1 maint: date and year (link)
  13. University of Texas at Austin (December 14, 2015). "Microsoft Word - dissertation_def_rev.doc - ch_2.pdf" (PDF).{{cite web}}: CS1 maint: url-status (link)
  14. "2.3: Scattering Parameters - Engineering LibreTexts". Engineering LibreTexts. October 21, 2020.{{cite web}}: CS1 maint: url-status (link)
  15. Syed V. Ahamed, Victor B. Lawrence, Design and engineering of intelligent communication systems, pp.130–131, Springer, 1997 ISBN   0-7923-9870-X.
  16. Evaluating Microphone Cable Performance & Specifications Archived 2016-05-09 at the Wayback Machine
  17. How Starquad Works Archived 2016-11-12 at the Wayback Machine
  18. Lampen, Stephen H. (2002). Audio/Video Cable Installer's Pocket Guide. McGraw-Hill. pp. 32, 110, 112. ISBN   978-0071386210.
  19. Rayburn, Ray (2011). Eargle's The Microphone Book: From Mono to Stereo to Surround – A Guide to Microphone Design and Application (3 ed.). Focal Press. pp.  164–166. ISBN   978-0240820750.
  20. Qian, Chunqi; Brey, William W. (2009). "Impedance matching with an adjustable segmented transmission line". Journal of Magnetic Resonance. 199 (1): 104–110. Bibcode:2009JMagR.199..104Q. doi:10.1016/j.jmr.2009.04.005. PMID   19406676.
  21. "Microwaves101 | Parasitics". Microwave Encyclopedia. Retrieved April 2, 2024.
  22. "2.12: Richards's Transformation - Engineering LibreTexts". Engineering LibreTexts. February 1, 2021.
  23. Rhea, Randall W. (1995). HF Filter Design and Computer Simulation. McGraw-Hill, Inc. pp. 86–89. ISBN   0-07-052055-0.{{cite book}}: CS1 maint: date and year (link)
  24. Rhea, Randall W. "A Multimode High-Frequency Inductor Model", Applied Microwaves & Wireless, November/December 1997, pp. 70-72, 74, 76-78, 80, Noble Publishing, Atlanta, Georgia, http://the-eye.unblocked2.us/public/Books/Electronic%20Archive/novdec1997-p70.pdf

Further reading