Twin-lead

Last updated
300 ohm twin-lead Twinlead.gif
300 ohm twin-lead

Twin-lead cable is a two-conductor flat cable used as a balanced transmission line to carry radio frequency (RF) signals. It is constructed of two stranded copper or copper-clad steel wires, held a precise distance apart by a plastic (usually polyethylene) ribbon. The uniform spacing of the wires is the key to the cable's function as a transmission line; any abrupt changes in spacing would reflect some of the signal back toward the source. The plastic also covers and insulates the wires.

Electrical conductor object or material which permits the flow of electricity

In physics and electrical engineering, a conductor is an object or type of material that allows the flow of charge in one or more directions. Materials made of metal are common electrical conductors. Electrical current is generated by the flow of negatively charged electrons, positively charged holes, and positive or negative ions in some cases.

In telecommunications and professional audio, a balanced line or balanced signal pair is a transmission line consisting of two conductors of the same type, each of which have equal impedances along their lengths and equal impedances to ground and to other circuits. The chief advantage of the balanced line format is good rejection of external noise when fed to a differential amplifier. Common forms of balanced line are twin-lead, used for radio frequency signals and twisted pair, used for lower frequencies. They are to be contrasted to unbalanced lines, such as coaxial cable, which is designed to have its return conductor connected to ground, or circuits whose return conductor actually is ground. Balanced and unbalanced circuits can be interconnected using a transformer called a balun.

Radio frequency (RF) is the oscillation rate of an alternating electric current or voltage or of a magnetic, electric or electromagnetic field or mechanical system in the frequency range from around twenty thousand times per second to around three hundred billion times per second. This is roughly between the upper limit of audio frequencies and the lower limit of infrared frequencies; these are the frequencies at which energy from an oscillating current can radiate off a conductor into space as radio waves. Different sources specify different upper and lower bounds for the frequency range.

Contents

Twin lead can have significantly lower signal loss than miniature flexible coaxial cable at shortwave and VHF radio frequencies; for example, type RG-58 coaxial cable loses 6.6 dB per 100 m at 30 MHz, while 300 ohm twin-lead loses only 0.55 dB. [1] However, twin-lead is more vulnerable to interference. Proximity to metal objects will inject signals into twin-lead that would be blocked out by coaxial cable. Twin lead therefore requires careful installation around rain gutters, and standoffs from metal support masts. Twin-lead is also susceptible to significant degradation when wet or ice covered, whereas coax is less or not affected in these conditions. For these reasons, coax has largely replaced twin-lead in most uses, except where maximum signal is required.

Coaxial cable A type of electrical cable with an inner conductor surrounded by concentric insulating layer and conducting shield

Coaxial cable, or coax is a type of electrical cable that has an inner conductor surrounded by a tubular insulating layer, surrounded by a tubular conducting shield. Many coaxial cables also have an insulating outer sheath or jacket. The term coaxial comes from the inner conductor and the outer shield sharing a geometric axis. Coaxial cable was invented by English physicist, engineer, and mathematician Oliver Heaviside, who patented the design in 1880.

RG-58/U is a type of coaxial cable often used for low-power signal and RF connections. The cable has a characteristic impedance of either 50 or 52 Ω. "RG" was originally a unit indicator for bulk RF cable in the U.S. military's Joint Electronics Type Designation System. There are several versions covering the differences in core material and shield.

Rain gutter component of a roof system which collects and diverts rainwater

A rain gutter, eavestrough or surface water collection channel is a component of water discharge system for a building.

Characteristics and uses

Twin lead and other types of parallel-conductor transmission line are mainly used to connect radio transmitters and receivers to their antennas. Parallel transmission line has the advantage that its losses are an order of magnitude smaller than that of coaxial cable, the main alternative form of transmission line. Its disadvantages are that it is more vulnerable to interference, and must be kept away from metal objects which can cause power losses. For this reason, when installed along the outside of buildings and on antenna masts, standoff insulators must be used. It is also common practice to twist the twin lead on long free standing lengths to further reject any induced imbalances to the line.

Radio receiver radio device for receiving radio waves and converting them to a useful signal

In radio communications, a radio receiver, also known as a receiver, wireless or simply radio is an electronic device that receives radio waves and converts the information carried by them to a usable form. It is used with an antenna. The antenna intercepts radio waves and converts them to tiny alternating currents which are applied to the receiver, and the receiver extracts the desired information. The receiver uses electronic filters to separate the desired radio frequency signal from all the other signals picked up by the antenna, an electronic amplifier to increase the power of the signal for further processing, and finally recovers the desired information through demodulation.

Antenna (radio) electrical device which converts electric power into radio waves, and vice versa

In radio engineering, an antenna is the interface between radio waves propagating through space and electric currents moving in metal conductors, used with a transmitter or receiver. In transmission, a radio transmitter supplies an electric current to the antenna's terminals, and the antenna radiates the energy from the current as electromagnetic waves. In reception, an antenna intercepts some of the power of a radio wave in order to produce an electric current at its terminals, that is applied to a receiver to be amplified. Antennas are essential components of all radio equipment.

Twin-lead is supplied in several different sizes, with values of 600, 450, 300, and 75  ohms characteristic impedance. The most common, 300 ohm twin-lead, was once widely used to connect television sets and FM radios to their receiving antennas. 300 ohm twin-lead for television installations has been largely replaced with 75 ohm coaxial cable feedlines. Twin-lead is also used in amateur radio stations as a transmission line for balanced transmission of radio frequency signals.

Characteristic impedance ratio of the amplitudes of voltage and current of a single wave propagating along the line

The characteristic impedance or surge impedance (usually written Z0) of a uniform transmission line is the ratio of the amplitudes of voltage and current of a single wave propagating along the line; that is, a wave travelling in one direction in the absence of reflections in the other direction. Alternatively and equivalently it can be defined as the input impedance of a transmission line when its length is infinite. Characteristic impedance is determined by the geometry and materials of the transmission line and, for a uniform line, is not dependent on its length. The SI unit of characteristic impedance is the ohm.

Television Telecommunication medium for transmitting and receiving moving images

Television (TV), sometimes shortened to tele or telly, is a telecommunication medium used for transmitting moving images in monochrome, or in colour, and in two or three dimensions and sound. The term can refer to a television set, a television program, or the medium of television transmission. Television is a mass medium for advertising, entertainment and news.

Amateur radio use of designated radio frequency spectra for purposes of non-commercial exchange of messages

Amateur radio, also known as ham radio, is the use of radio frequency spectrum for purposes of non-commercial exchange of messages, wireless experimentation, self-training, private recreation, radiosport, contesting, and emergency communication. The term "amateur" is used to specify "a duly authorised person interested in radioelectric practice with a purely personal aim and without pecuniary interest;" and to differentiate it from commercial broadcasting, public safety, or professional two-way radio services.

The characteristic impedance of twin-lead is a function of the wire diameter and its spacing; in 300 ohm twin-lead, the most common type, the wire is usually 20 or 22  gauge, about 7.5 mm (0.30 inches) apart. [2] This is well matched with the natural impedance of a folded dipole antenna, which is normally around 275 ohms. Twin-lead generally has higher impedance than the other common transmission wiring, coaxial cable (coax). The widely used RG-6 coax has a characteristic impedance of 75 ohms, which requires the use of a balun to match impedance when used with common antenna types.

Electrical impedance intensive physical property

Electrical impedance is the measure of the opposition that a circuit presents to a current when a voltage is applied. The term complex impedance may be used interchangeably.

Wire gauge measurement of wire diameter

Wire gauge is a measurement of wire diameter. This determines the amount of electric current a wire can safely carry, as well as its electrical resistance and weight.

RG-6 type of coaxial cable

RG-6/U is a common type of coaxial cable used in a wide variety of residential and commercial applications. An RG-6/U coaxial cable has a characteristic impedance of 75 ohms. The term, RG-6, is generic and is applied to a wide variety of cable designs, which differ from one another in shielding characteristics, center conductor composition, dielectric type and jacket type. RG was originally a unit indicator for bulk radio frequency (RF) cable in the U.S. military's Joint Electronics Type Designation System. The suffix /U means for general utility use. The number was assigned sequentially. The RG unit indicator is no longer part of the JETDS system (MIL-STD-196E) and cable sold today under the RG-6 label is unlikely to meet military specifications. In practice, the term RG-6 is generally used to refer to coaxial cables with an 18 AWG center conductor and 75 ohm characteristic impedance.

How it works

A 300-to-75-ohm balun, showing twin-lead on the right hand side Tvbalun.jpg
A 300-to-75-ohm balun, showing twin-lead on the right hand side

Twin lead is a form of parallel-wire balanced transmission line. The separation between the two wires in twin-lead is small compared to the wavelength of the radio frequency (RF) signal carried on the wire. [3] The RF current in one wire is equal in magnitude and opposite in direction to the RF current in the other wire. Therefore, in the far field region far from the transmission line, the radio waves radiated by one wire are equal in magnitude but opposite in phase (180° out of phase) to the waves radiated by the other wire, so they superpose and cancel each other. [3] The result is that almost no net radio energy is radiated by the line.

Wavelength spatial period of the wave—the distance over which the waves shape repeats, and thus the inverse of the spatial frequency

In physics, the wavelength is the spatial period of a periodic wave—the distance over which the wave's shape repeats. It is thus the inverse of the spatial frequency. Wavelength is usually determined by considering the distance between consecutive corresponding points of the same phase, such as crests, troughs, or zero crossings and is a characteristic of both traveling waves and standing waves, as well as other spatial wave patterns. Wavelength is commonly designated by the Greek letter lambda (λ). The term wavelength is also sometimes applied to modulated waves, and to the sinusoidal envelopes of modulated waves or waves formed by interference of several sinusoids.

Electric current flow of electric charge

An electric current is the rate of flow of electric charge past a point or region. An electric current is said to exist when there is a net flow of electric charge through a region. In electric circuits this charge is often carried by electrons moving through a wire. It can also be carried by ions in an electrolyte, or by both ions and electrons such as in an ionized gas (plasma).

Radio wave type of electromagnetic radiation

Radio waves are a type of electromagnetic radiation with wavelengths in the electromagnetic spectrum longer than infrared light. Radio waves have frequencies as high as 300 gigahertz (GHz) to as low as 30 hertz (Hz). At 300 GHz, the corresponding wavelength is 1 mm, and at 30 Hz is 10,000 km. Like all other electromagnetic waves, radio waves travel at the speed of light in vacuum. They are generated by electric charges undergoing acceleration, such as time varying electric currents. Naturally occurring radio waves are emitted by lightning and astronomical objects.

Similarly, any interfering external radio waves will induce equal, in phase RF currents, traveling in the same direction, in the two wires. Since the load at the destination end is connected across the wires, only differential, oppositely-directed currents in the wires create a current in the load. Thus the interfering currents are canceled out, so twin lead does not tend to pick up radio noise.

However, if a piece of metal is located sufficiently close to a twin-lead line, within a distance comparable to the wire spacing, it will be significantly closer to one wire than the other. As a result, the RF current induced in the metal object by one wire will be greater than the opposing current induced by the other wire, so the currents will no longer cancel. Thus nearby metal objects can cause power losses in twin lead lines, through energy dissipated as heat by induced currents. Similarly, radio noise originating in cables or metal objects located near the twin-lead line can induce unbalanced currents in the wires, coupling noise into the line.

In order to prevent power from being reflected from the load end of the line, causing high SWR and inefficiency, the load must have an impedance which matches the characteristic impedance of the line. This causes the load to appear electrically identical to a continuation of the line, preventing reflections. Similarly, to transfer power efficiently into the line, the source must also match the characteristic impedance. To connect balanced transmission line to unbalanced line like coaxial cable, a device called a balun must be used.

Ladder line

Ladder line.jpg
450 ohm "Ladder line"
LadderlineW3NP.JPG
600 ohm "open wire line"

Ladder line or "window line" is a variation of twin lead which is constructed similarly, except that the polyethylene webbing between the wires which holds them apart has rectangular openings ("windows") cut in it. [2] [4] The line consists of two insulated wires with "rungs" of plastic holding them together every few inches, giving it the appearance of a ladder. The advantage of the "windows" is that they lighten the line, and also reduce the amount of surface on which dirt and moisture can accumulate, making ladder line less vulnerable to weather-induced changes in characteristic impedance. [2] The most common type is 450 ohm ladder line, which has a conductor spacing of about an inch. [2]

Ladder line may also be manufactured or DIY-constructed as "open wire line" consisting of two parallel wires featuring widely spaced plastic or ceramic insulating bars and having a characteristic impedance of 600 ohms or more. [5]

Impedance matching

As a transmission line, transmission efficiency will be maximum when the impedance of the antenna, the characteristic impedance of the twin-lead line and the impedance of the equipment are the same. For this reason, when attaching a twin-lead line to a coaxial cable connection, such as the 300 ohm twin-lead from a domestic television antenna to the television's 75 ohm coax antenna input, a balun with a 4:1 ratio is commonly used. Its purpose is double: first, it transforms twin-lead's 300 ohm impedance to match the 75 ohm coaxial cable impedance; and second, it transforms the balanced, symmetric transmission line to the unbalanced coax input. In general, when used as a feedline, twin-lead (especially ladder line versions) has a higher efficiency than coaxial cable when there is an impedance mismatch between the feedline and the source (or sink). For receive-only use this merely implies that the system can communicate under slightly less optimal conditions; for transmit use, this can often result in significantly less energy lost as heat in the transmission line.

Twin-lead also can serve as a convenient material with which to build a simple folded dipole antenna. Such antennas may be fed either by using a 300 ohm twin-lead feeder or by using a 300-to-75-ohm balun and using coaxial feedline and will usually handle moderate power loads without overheating.

Characteristic impedance

The characteristic impedance of a parallel-wire transmission line like twin lead or ladder line depends on its dimensions; the diameter of the wires d and their separation D. This is derived below.

The characteristic impedance of any transmission line is given by

where for twin-lead line the primary line constants are

where the surface resistance of the wires is

and where d is the wire diameter and D is the separation of the wires measured between their centrelines.

Neglecting the wire resistance R and the leakage conductance G, this gives

[6]

where Z0 is the impedance of free space (approximately 377 Ω), εr is the effective dielectric constant (which for air is 1.00054). If the separation D is much greater than the wire diameter d then this is approximately

[7]

The separation needed to achieve a given characteristic impedance is therefore

The dielectric material between the two conductors with either twin-lead or ladder line is not all air. The effect of a "mixed" dielectric, part air and part polyethylene or other plastic, is that the actual impedance will fall somewhere between the value calculated assuming all air or all polyethylene. Published or measured values for Z0 will be more accurate than the formula values.

Antennas

Twin-lead can be connected directly to a suitably designed antenna:

Related Research Articles

In radio engineering and telecommunications, standing wave ratio (SWR) is a measure of impedance matching of loads to the characteristic impedance of a transmission line or waveguide. Impedance mismatches result in standing waves along the transmission line, and SWR is defined as the ratio of the partial standing wave's amplitude at an antinode (maximum) to the amplitude at a node (minimum) along the line.

Transmission line specialized cable or other structure designed to carry alternating current of radio frequency

In radio-frequency engineering, a transmission line is a specialized cable or other structure designed to conduct alternating current of radio frequency, that is, currents with a frequency high enough that their wave nature must be taken into account. Transmission lines are used for purposes such as connecting radio transmitters and receivers with their antennas, distributing cable television signals, trunklines routing calls between telephone switching centres, computer network connections and high speed computer data buses.

The wave impedance of an electromagnetic wave is the ratio of the transverse components of the electric and magnetic fields. For a transverse-electric-magnetic (TEM) plane wave traveling through a homogeneous medium, the wave impedance is everywhere equal to the intrinsic impedance of the medium. In particular, for a plane wave travelling through empty space, the wave impedance is equal to the impedance of free space. The symbol Z is used to represent it and it is expressed in units of ohms. The symbol η (eta) may be used instead of Z for wave impedance to avoid confusion with electrical impedance.

Balun

A balun is an electrical device that converts between a balanced signal and an unbalanced signal. A balun can take many forms and may include devices that also transform impedances but need not do so. Transformer baluns can also be used to connect lines of differing impedance. Sometimes, in the case of transformer baluns, they use magnetic coupling but need not do so. Common-mode chokes are also used as baluns and work by eliminating, rather than ignoring, common mode signals.

Impedance matching practice in electronics

In electronics, impedance matching is the practice of designing the input impedance of an electrical load or the output impedance of its corresponding signal source to maximize the power transfer or minimize signal reflection from the load.

Electrical termination electronic circuit

In electronics, electrical termination is the practice of ending a transmission line with a device that matches the characteristic impedance of the line. This is intended to prevent signals from reflecting off the end of the transmission line. Reflections at the ends of unterminated transmission lines cause distortion which can produce ambiguous digital signal levels and mis-operation of digital systems. Reflections in analog signal systems cause such effects as video ghosting, or power loss in radio transmitter transmission lines.

Dipole antenna antenna

In radio and telecommunications a dipole antenna or doublet is the simplest and most widely used class of antenna. The dipole is any one of a class of antennas producing a radiation pattern approximating that of an elementary electric dipole with a radiating structure supporting a line current so energized that the current has only one node at each end. A dipole antenna commonly consists of two identical conductive elements such as metal wires or rods. The driving current from the transmitter is applied, or for receiving antennas the output signal to the receiver is taken, between the two halves of the antenna. Each side of the feedline to the transmitter or receiver is connected to one of the conductors. This contrasts with a monopole antenna, which consists of a single rod or conductor with one side of the feedline connected to it, and the other side connected to some type of ground. A common example of a dipole is the "rabbit ears" television antenna found on broadcast television sets.

Antenna tuner Telecommunications device

Antenna tuner, matching network, matchbox, transmatch, antenna tuning unit (ATU), antenna coupler, and feedline coupler are all equivalent names for a device connected between a radio transmitter and its antenna, to improve power transfer between them by matching the specified load impedance of the radio to the combined input impedance of the feedline and the antenna.

Feed line Transmission line in radio antennas

In a radio antenna, the feed line (feedline), or feeder, is the cable or other transmission line that connects the antenna with the radio transmitter or receiver. In a transmitting antenna, it feeds the radio frequency (RF) current from the transmitter to the antenna, where it is radiated as radio waves. In a receiving antenna it transfers the tiny RF voltage induced in the antenna by the radio wave to the receiver. In order to carry RF current efficiently, feed lines are made of specialized types of cable called transmission line. The most widely used types of feed line are coaxial cable, twin-lead, ladder line, and at microwave frequencies, waveguide.

Stub (electronics) short electrical transmission line

In microwave and radio-frequency engineering, a stub or resonant stub is a length of transmission line or waveguide that is connected at one end only. The free end of the stub is either left open-circuit or short-circuited. Neglecting transmission line losses, the input impedance of the stub is purely reactive; either capacitive or inductive, depending on the electrical length of the stub, and on whether it is open or short circuit. Stubs may thus function as capacitors, inductors and resonant circuits at radio frequencies.

SWR meter Measurement device for radio equipment

The SWR meter or VSWR meter measures the standing wave ratio in a transmission line. The meter can be used to indicate the degree of mismatch between a transmission line and its load, or evaluate the effectiveness of impedance matching efforts.

The telegrapher's equations are a pair of coupled, linear partial differential equations that describe the voltage and current on an electrical transmission line with distance and time. The equations come from Oliver Heaviside who in the 1880s developed the transmission line model. The model demonstrates that the electromagnetic waves can be reflected on the wire, and that wave patterns can appear along the line. The theory applies to transmission lines of all frequencies including high-frequency transmission lines, audio frequency, low frequency and direct current.

Π pad

The Π pad is a specific type of attenuator circuit in electronics whereby the topology of the circuit is formed in the shape of the Greek letter "Π".

Primary line constants

The primary line constants are parameters that describe the characteristics of conductive transmission lines, such as pairs of copper wires, in terms of the physical electrical properties of the line. The primary line constants are only relevant to transmission lines and are to be contrasted with the secondary line constants, which can be derived from them, and are more generally applicable. The secondary line constants can be used, for instance, to compare the characteristics of a waveguide to a copper line, whereas the primary constants have no meaning for a waveguide.

Nominal impedance in electrical engineering and audio engineering refers to the approximate designed impedance of an electrical circuit or device. The term is applied in a number of different fields, most often being encountered in respect of:

G5RV antenna

The G5RV antenna is a dipole with a symmetric resonant feeder line, which serves as impedance matcher for a 50 ohm coax cable to the transceiver.

Space cloth is a hypothetical infinite plane of conductive material having a resistance of η ohms per square, where η is the Impedance of free space. η ≈ 376.7 ohms. If a transmission line composed of straight parallel perfect conductors in free space is terminated by space cloth that is normal to the transmission line then that transmission line is terminated by its characteristic impedance. The calculation of the characteristic impedance of a transmission line composed of straight, parallel good conductors may be replaced by the calculation of the D.C. resistance between electrodes placed on a two-dimensional resistive surface. This equivalence can be used in reverse to calculate the resistance between two conductors on a resistive sheet if the arrangement of the conductors is the same as the cross section of a transmission line of known impedance. For example, a pad surrounded by a guard ring on a printed circuit board (PCB) is similar to the cross section of a coaxial cable transmission line.

References

  1. "Why ladder line?". Highveld Amateur Radio Club.
  2. 1 2 3 4 Straw, R. Dean, Ed. (2000). The ARRL Antenna Book, 19th Ed. USA: American Radio Relay League. pp. 24.16–17. ISBN   0-87259-817-9.
  3. 1 2 Straw, R. Dean, Ed. (2000). The ARRL Antenna Book, 19th Ed. USA: American Radio Relay League. p. 24.1. ISBN   0-87259-817-9.
  4. Ford, Steve (December 1993). "The Lure Of Ladder Line" (PDF). QST. ARRL. Retrieved September 16, 2011.
  5. Danzer, Paul (April 2004). "Open Wire Feed Line—A Second Look". QST. ARRL. Retrieved September 16, 2011.
  6. Balanced Transmission Line in Current Amateur Practice, ARRL Antenna Compendium, Volume 6. Wes Stewart, N7WS.
  7. ARRL Handbook for Amateur Radio. Newington, CT: American Radio Relay League. 2000. p. 19.3.