Antenna equivalent radius

Last updated

The equivalent radius of an antenna electrical conductor is defined as: [1] [2]

Contents

where denotes the conductor's circumference, is the length of the circumference, and are vectors locating points along the circumference, and and are differentials segments along it. The equivalent radius allows the use of analytical formulas or computational or experimental data derived for antennas constructed from small conductors with uniform, circular cross-sections to be applied in the analysis of antennas constructed from small conductors with uniform, non-circular cross-sections. Here "small" means the largest dimension of the cross-section is much less than the wavelength .

Formulas

The following table lists equivalent radii for various conductor cross-sections derived assuming 1) all dimensions are much less than , 2) for cross-sections composed of multiple conductors, the distances between conductors are much greater than any single conductor dimension. . Formulas for the square and triangular cross-sections follow from numerical evaluation of the double integral. All other formulas are exact.

Cross-SectionDescriptionEquivalent Radius
Two-conductor ant eq rad.png Two identical circular conductors
Two-diff-conductor antenna cross-section.png Two circular conductors
with unequal radii
Three-conductor antenna cross-section.png Identical circular conductors
arranged in a triangle
Four-conductor antenna cross-section.png Identical circular conductors
arranged in a square
Five-conductor antenna cross-section.png Identical circular conductors
arranged in a pentagon
Six-conductor antenna cross-section.png Identical circular conductors
arranged in a hexagon
Multiple-conductor antenna cross-section.png Identical circular conductors
uniformly spaced around a circle
Flat thin conductor antenna cross-section.png Flat, infinitely thin conductor
Square conductor antenna cross-section.png Square conductor
Triangular conductor antenna cross-section.png Equilateral triangle conductor

Derivation

The equivalent radius is derived by equating the average magnetic vector potential at the surface of a conductor of arbitrary cross-section with the potential on the surface of a cylinder.

Assume a conductor's cross-section dimensions are small compared to the wavelength, current only flows axially along the conductor, the current distribution slowly varies along the conductor's length, and current is approximately uniformly distributed along its circumference (owing to the skin effect). Furthermore, only the current in a neighborhood around any point on the conductor significantly contributes to the potential at that point. Time dependence is ignored, as it may be incorporated by multiplying the current distribution by a time-varying sinusoid. These conditions imply that a quasi-static condition exists and that the geometry is, effectively, one of an infinitely long conductor with a constant surface current density (current per area), thereby reducing a three-dimensional problem to a two-dimensional one. Also implied is the magnetic vector potential is parallel to the conductor's axis.

First, consider the potential at a fixed point on the circumference of the arbitrary cross-section. With the circumference divided into differential segments , the current distribution may be approximated by placing a vertical line current within each segment, each with a linear density of (current per length). It is well known that the potential of such a line current is , where is the permeability constant. The potential at is the sum of the potentials for all the strips, which is

The average potential is then

Now consider the case of cylinder with the same linear current density as the conductor of arbitrary cross-section. It is also well known that the potential at any point on its surface, which is also equal its average potential, is

Equating and yields

Exponentiation of both side leads to the formula for the equivalent radius.

The formula for the equivalent radius provides consistent results. If the conductor cross-section dimensions are scaled by a factor , the equivalent radius is scaled by . Also, the equivalent radius of a cylindrical conductor is equal to the radius of the conductor.

Related Research Articles

<span class="mw-page-title-main">Curl (mathematics)</span> Circulation density in a vector field

In vector calculus, the curl, also known as rotor, is a vector operator that describes the infinitesimal circulation of a vector field in three-dimensional Euclidean space. The curl at a point in the field is represented by a vector whose length and direction denote the magnitude and axis of the maximum circulation. The curl of a field is formally defined as the circulation density at each point of the field.

<span class="mw-page-title-main">Lorentz force</span> Force acting on charged particles in electric and magnetic fields

In physics, specifically in electromagnetism, the Lorentz force law is the combination of electric and magnetic force on a point charge due to electromagnetic fields. The Lorentz force, on the other hand, is a physical effect that occurs in the vicinity of electrically neutral, current-carrying conductors causing moving electrical charges to experience a magnetic force.

<span class="mw-page-title-main">Magnetic field</span> Distribution of magnetic force

A magnetic field is a physical field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to the magnetic field. A permanent magnet's magnetic field pulls on ferromagnetic materials such as iron, and attracts or repels other magnets. In addition, a nonuniform magnetic field exerts minuscule forces on "nonmagnetic" materials by three other magnetic effects: paramagnetism, diamagnetism, and antiferromagnetism, although these forces are usually so small they can only be detected by laboratory equipment. Magnetic fields surround magnetized materials, electric currents, and electric fields varying in time. Since both strength and direction of a magnetic field may vary with location, it is described mathematically by a function assigning a vector to each point of space, called a vector field.

<span class="mw-page-title-main">Multivariate normal distribution</span> Generalization of the one-dimensional normal distribution to higher dimensions

In probability theory and statistics, the multivariate normal distribution, multivariate Gaussian distribution, or joint normal distribution is a generalization of the one-dimensional (univariate) normal distribution to higher dimensions. One definition is that a random vector is said to be k-variate normally distributed if every linear combination of its k components has a univariate normal distribution. Its importance derives mainly from the multivariate central limit theorem. The multivariate normal distribution is often used to describe, at least approximately, any set of (possibly) correlated real-valued random variables, each of which clusters around a mean value.

<span class="mw-page-title-main">Biot–Savart law</span> Important law of classical magnetism

In physics, specifically electromagnetism, the Biot–Savart law is an equation describing the magnetic field generated by a constant electric current. It relates the magnetic field to the magnitude, direction, length, and proximity of the electric current.

<span class="mw-page-title-main">Log-normal distribution</span> Probability distribution

In probability theory, a log-normal (or lognormal) distribution is a continuous probability distribution of a random variable whose logarithm is normally distributed. Thus, if the random variable X is log-normally distributed, then Y = ln(X) has a normal distribution. Equivalently, if Y has a normal distribution, then the exponential function of Y, X = exp(Y), has a log-normal distribution. A random variable which is log-normally distributed takes only positive real values. It is a convenient and useful model for measurements in exact and engineering sciences, as well as medicine, economics and other topics (e.g., energies, concentrations, lengths, prices of financial instruments, and other metrics).

<span class="mw-page-title-main">Inductance</span> Property of electrical conductors

Inductance is the tendency of an electrical conductor to oppose a change in the electric current flowing through it. The electric current produces a magnetic field around the conductor. The magnetic field strength depends on the magnitude of the electric current, and follows any changes in the magnitude of the current. From Faraday's law of induction, any change in magnetic field through a circuit induces an electromotive force (EMF) (voltage) in the conductors, a process known as electromagnetic induction. This induced voltage created by the changing current has the effect of opposing the change in current. This is stated by Lenz's law, and the voltage is called back EMF.

In statistics, the Gauss–Markov theorem states that the ordinary least squares (OLS) estimator has the lowest sampling variance within the class of linear unbiased estimators, if the errors in the linear regression model are uncorrelated, have equal variances and expectation value of zero. The errors do not need to be normal, nor do they need to be independent and identically distributed. The requirement that the estimator be unbiased cannot be dropped, since biased estimators exist with lower variance. See, for example, the James–Stein estimator, ridge regression, or simply any degenerate estimator.

In vector calculus, Green's theorem relates a line integral around a simple closed curve C to a double integral over the plane region D bounded by C. It is the two-dimensional special case of Stokes' theorem. In one dimension, it is equivalent to the fundamental theorem of calculus. In three dimensions, it is equivalent to the divergence theorem.

<span class="mw-page-title-main">Skin effect</span> Tendency of AC current flow in a conductors outer layer

In electromagnetism, skin effect is the tendency of an alternating electric current (AC) to become distributed within a conductor such that the current density is largest near the surface of the conductor and decreases exponentially with greater depths in the conductor. It is caused by opposing eddy currents induced by the changing magnetic field resulting from the alternating current. The electric current flows mainly at the skin of the conductor, between the outer surface and a level called the skin depth.

In statistics, the Bhattacharyya distance is a quantity which represents a notion of similarity between two probability distributions. It is closely related to the Bhattacharyya coefficient, which is a measure of the amount of overlap between two statistical samples or populations.

In mathematical statistics, the Kullback–Leibler (KL) divergence, denoted , is a type of statistical distance: a measure of how one probability distribution P is different from a second, reference probability distribution Q. Mathematically, it is defined as

The sensitivity index or discriminability index or detectability index is a dimensionless statistic used in signal detection theory. A higher index indicates that the signal can be more readily detected.

<span class="mw-page-title-main">Mathematical descriptions of the electromagnetic field</span> Formulations of electromagnetism

There are various mathematical descriptions of the electromagnetic field that are used in the study of electromagnetism, one of the four fundamental interactions of nature. In this article, several approaches are discussed, although the equations are in terms of electric and magnetic fields, potentials, and charges with currents, generally speaking.

In fluid dynamics and electrostatics, slender-body theory is a methodology that can be used to take advantage of the slenderness of a body to obtain an approximation to a field surrounding it and/or the net effect of the field on the body. Principal applications are to Stokes flow — at very low Reynolds numbers — and in electrostatics.

<span class="mw-page-title-main">Ampère's force law</span> Physical law

In magnetostatics, the force of attraction or repulsion between two current-carrying wires is often called Ampère's force law. The physical origin of this force is that each wire generates a magnetic field, following the Biot–Savart law, and the other wire experiences a magnetic force as a consequence, following the Lorentz force law.

Hele-Shaw flow is defined as flow taking place between two parallel flat plates separated by a narrow gap satisfying certain conditions, named after Henry Selby Hele-Shaw, who studied the problem in 1898. Various problems in fluid mechanics can be approximated to Hele-Shaw flows and thus the research of these flows is of importance. Approximation to Hele-Shaw flow is specifically important to micro-flows. This is due to manufacturing techniques, which creates shallow planar configurations, and the typically low Reynolds numbers of micro-flows.

In nonideal fluid dynamics, the Hagen–Poiseuille equation, also known as the Hagen–Poiseuille law, Poiseuille law or Poiseuille equation, is a physical law that gives the pressure drop in an incompressible and Newtonian fluid in laminar flow flowing through a long cylindrical pipe of constant cross section. It can be successfully applied to air flow in lung alveoli, or the flow through a drinking straw or through a hypodermic needle. It was experimentally derived independently by Jean Léonard Marie Poiseuille in 1838 and Gotthilf Heinrich Ludwig Hagen, and published by Hagen in 1839 and then by Poiseuille in 1840–41 and 1846. The theoretical justification of the Poiseuille law was given by George Stokes in 1845.

Lagrangian field theory is a formalism in classical field theory. It is the field-theoretic analogue of Lagrangian mechanics. Lagrangian mechanics is used to analyze the motion of a system of discrete particles each with a finite number of degrees of freedom. Lagrangian field theory applies to continua and fields, which have an infinite number of degrees of freedom.

A quantile-parameterized distribution (QPD) is a probability distributions that is directly parameterized by data. They were created to meet the need for easy-to-use continuous probability distributions flexible enough to represent a wide range of uncertainties, such as those commonly encountered in business, economics, engineering, and science. Because QPDs are directly parameterized by data, they have the practical advantage of avoiding the intermediate step of parameter estimation, a time-consuming process that typically requires non-linear iterative methods to estimate probability-distribution parameters from data. Some QPDs have virtually unlimited shape flexibility and closed-form moments as well.

References

  1. E.A. Wolff, Antenna Analysis, Chapter 3, John Wiley & Sons, New York, NY, Second Edition, 1966.
  2. David M. Drumheller K3WQ, The Antenna Equivalent Radius: A Model for Non-Circular Conductors, QEX, American Radio Relay League, Newington CT, 2017 March/April pp. 10ff.