Small cell

Last updated

CableFree 5G Small Cell installed on a mast for a 5G-SA Private Network CableFree-5G-Small-Cell-Installation.jpg
CableFree 5G Small Cell installed on a mast for a 5G-SA Private Network
A small cell situated in the terrace of a building in Bangalore, India Small Cell by Samsung.jpg
A small cell situated in the terrace of a building in Bangalore, India
LTE small cell operated by the German carrier Deutsche Telekom Telekom Small Cell.jpg
LTE small cell operated by the German carrier Deutsche Telekom
Small cell inside a shopping mall Small Cell.jpg
Small cell inside a shopping mall

Small cells are low-powered cellular radio access nodes that operate in spectrum that have a range of 10 meters to a few kilometers. They are base stations with low power consumption and cheap cost. They can provide high data rates by being deployed densely to achieve high spatial spectrum efficiency. [1]

Contents

Recent FCC orders have provided size and elevation guidelines to help more clearly define small cell equipment. [2] [3] They are "small" compared to a mobile macrocell, partly because they have a shorter range and partly because they typically handle fewer concurrent calls or sessions. As wireless carriers seek to 'densify' existing wireless networks to provide for the data capacity demands of 5G, small cells are currently viewed as a solution to allow re-using the same frequencies, [4] [5] [6] and as an important method of increasing cellular network capacity, quality, and resilience with a growing focus using LTE Advanced.

Types of small cells

Small cells may encompass femtocells, picocells, and microcells. Small-cell networks can also be realized by means of distributed radio technology using centralized baseband units and remote radio heads. Beamforming technology (focusing a radio signal on a very specific area) can further enhance or focus small cell coverage. These approaches to small cells all feature central management by mobile network operators.

Small cells provide a small radio footprint, which can range from 10 meters within urban and in-building locations to 2 km for a rural location. Picocells and microcells can also have a range of a few hundred meters to a few kilometers, but they differ from femtocells in that they do not always have self-organising and self-management capabilities.

Small cells are available for a wide range of air interfaces including GSM, CDMA2000, TD-SCDMA, W-CDMA, LTE and 5G. In 3GPP terminology, a Home Node B (HNB) is a 3G femtocell. A Home eNode B (HeNB) is an LTE femtocell. Wi-Fi is a small cell but does not operate in licensed spectrum and therefore cannot be managed as effectively as small cells utilising licensed spectrum. Small cell deployments vary according to the use case and radio technology employed.

Umbrella term

The most common form of small cells are femtocells. They were initially designed for residential and small business use, with a short range and a limited number of channels. Femtocells with increased range and capacity spawned a proliferation of terms: metrocells, metro femtocells, public access femtocells, enterprise femtocells, super femtos, Class 3 femto, greater femtos and microcells. The term "small cells" is frequently used by analysts and the industry as an umbrella to describe the different implementations of femtocells, and to clear up any confusion that femtocells are limited to residential uses. Small cells are sometimes, incorrectly, also used to describe distributed-antenna systems (DAS) which are not low-powered access nodes.

Purpose

Small cells can be used to provide in-building and outdoor wireless service. Mobile operators use them to extend their service coverage and/or increase network capacity.

ABI Research argues that small cells also help service providers discover new revenue opportunities through their location and presence information. If a registered user enters a femtozone, the network is notified of their location. The service provider, with the user's permission, could share this location information to update user's social media status, for instance. Opening up small-cell APIs to the wider mobile ecosystem could enable a long-tail effect.

Rural coverage is also a key market that has developed as mobile operators have started to install public access metrocells in remote and rural areas that either have only 2G coverage or no coverage at all. The cost advantages of small cells compared with macro cells make it economically feasible to provide coverage of much smaller communities – from a few ten to a few hundred. The Small Cell Forum have published a white paper outlining the technology and business case aspects. [7] Mobile operators in both developing and developed countries are either trialing or installing such systems. The pioneer in providing rural coverage using small cells was SoftBank Mobile – the Japanese mobile operator – who have installed more than 3000 public access 3G small cells on post offices throughout rural Japan. In the UK, Vodafone's Rural Open Sure Signal program and EE's rural 3G/4G scheme increase geographic coverage.

Future mobile networks

Small cells are an integral part of LTE networks. In 3G networks, small cells are viewed as an offload technique. [8] In 4G networks, the principle of heterogeneous network (HetNet) is introduced where the mobile network is constructed with layers of small and large cells. [9] In LTE, all cells will be self-organizing, drawing upon the principles laid down in current Home NodeB (HNB), the 3GPP term for residential femtocells.

Future innovations in radio access design introduce the idea of an almost flat architecture where the difference between a small cell and a macrocell depends on how many cubes are stacked together.

The transmitting signal from Macro Base Station (MBS) weakens quickly once the MBS signal reaches indoors. Femtocells provide a solution to the difficulties present in macrocell-based system. Thus, Femto Base Station (FBS) network coverage is one of the prime concerns in indoor environment to get good quality of service (QoS). [10]

Market deployments to date

By December 2017 a total of over 12 million small cells have been deployed worldwide, with forecasts as high as 70 million by 2025. [11]

Small cell backhaul

Backhaul is needed to connect the small cells to the core network, internet and other services. For in-building use, existing broadband internet can be used. In urban outdoors, mobile operators consider this more challenging than macrocell backhaul because a) small cells are typically in hard-to-reach, near-street-level locations rather than in more open, above-rooftop locations and b) carrier grade connectivity must be provided at much lower cost per bit. Many different wireless and wired technologies have been proposed as solutions, and it is agreed that a toolbox of these will be needed to address a range of deployment scenarios. An industry consensus view of how the different solution characteristics match with requirements is published by the Small Cell Forum. [12] The backhaul solution is influenced by a number of factors, including the operator's original motivation to deploy small cells, which could be for targeted capacity, indoor or outdoor coverage. [13]

See also

Related Research Articles

<span class="mw-page-title-main">Wireless network</span> Computer network not fully connected by cables

A wireless network is a computer network that uses wireless data connections between network nodes. Wireless networking allows homes, telecommunications networks and business installations to avoid the costly process of introducing cables into a building, or as a connection between various equipment locations. Admin telecommunications networks are generally implemented and administered using radio communication. This implementation takes place at the physical level (layer) of the OSI model network structure.

<span class="mw-page-title-main">WiMAX</span> Wireless broadband standard

Worldwide Interoperability for Microwave Access (WiMAX) is a family of wireless broadband communication standards based on the IEEE 802.16 set of standards, which provide physical layer (PHY) and media access control (MAC) options.

4G is the fourth generation of broadband cellular network technology, succeeding 3G and preceding 5G. A 4G system must provide capabilities defined by ITU in IMT Advanced. Potential and current applications include amended mobile web access, IP telephony, gaming services, high-definition mobile TV, video conferencing, and 3D television.

<span class="mw-page-title-main">Cellular network</span> Communication network

A cellular network or mobile network is a telecommunications network where the link to and from end nodes is wireless and the network is distributed over land areas called cells, each served by at least one fixed-location transceiver. These base stations provide the cell with the network coverage which can be used for transmission of voice, data, and other types of content. A cell typically uses a different set of frequencies from neighboring cells, to avoid interference and provide guaranteed service quality within each cell.

A microcell is a cell in a mobile phone network served by a low power cellular base station (tower), covering a limited area such as a mall, a hotel, or a transportation hub. A microcell is usually larger than a picocell, though the distinction is not always clear. A microcell uses power control to limit the radius of its coverage area.

In computer networking, a heterogeneous network is a network connecting computers and other devices where the operating systems and protocols have significant differences. For example, local area networks (LANs) that connect Microsoft Windows and Linux based personal computers with Apple Macintosh computers are heterogeneous.

Cellcom is a regional wireless service provider based in De Pere, Wisconsin, with roots that date back to 1910. Cellcom began providing service from its office in Green Bay in 1987, when its parent company, Nsight, entered the wireless industry.

A picocell is a small cellular base station typically covering a small area, such as in-building, or more recently in-aircraft. In cellular networks, picocells are typically used to extend coverage to indoor areas where outdoor signals do not reach well, or to add network capacity in areas with very dense phone usage, such as train stations or stadiums. Picocells provide coverage and capacity in areas difficult or expensive to reach using the more traditional macrocell approach.

In a hierarchical telecommunications network, the backhaul portion of the network comprises the intermediate links between the core network, or backbone network, and the small subnetworks at the edge of the network.

<span class="mw-page-title-main">Cambridge Broadband</span> UK-based telecommunications equipment company

Cambridge Broadband Networks Limited (CBNL) is a telecommunications company which develops and manufactures point-to-multipoint (PMP) wireless backhaul and access solutions, providing services to telecommunication customers in more than 30 countries.

<span class="mw-page-title-main">Femtocell</span> Small, low-power cellular base station

In telecommunications, a femtocell is a small, low-power cellular base station, typically designed for use in a home or small business. A broader term which is more widespread in the industry is small cell, with femtocell as a subset. It connects to the service provider's network via broadband ; current designs typically support four to eight simultaneously active mobile phones in a residential setting depending on version number and femtocell hardware, and eight to sixteen mobile phones in enterprise settings. A femtocell allows service providers to extend service coverage indoors or at the cell edge, especially where access would otherwise be limited or unavailable. Although much attention is focused on WCDMA, the concept is applicable to all standards, including GSM, CDMA2000, TD-SCDMA, WiMAX and LTE solutions.

<span class="mw-page-title-main">Airspan Networks</span> American telecommunications company

Airspan Networks is an American telecommunications company headquartered in Boca Raton, Florida. The company develops Radio Access Network technology including the Sprint 'Magic Box' and cells for the Rakuten virtualized network.

Airvana was acquired by CommScope in 2015. Prior to that, the company was an independent provider of small cells and femtocells based on fourth generation (4G) Long Term Evolution (LTE) and third-generation (3G) CDMA2000 EV-DO mobile broadband technologies. Airvana products enable mobile operators to deliver 3G and 4G cellular data services indoors.

A macrocell or macrosite is a cell in a mobile phone network that provides radio coverage served by a high power cell site. Generally, macrocells provide coverage larger than microcell. The antennas for macrocells are mounted on ground-based masts, rooftops and other existing structures, at a height that provides a clear view over the surrounding buildings and terrain. Macrocell base stations have power outputs of typically tens of watts. Macrocell performance can be increased by increasing the efficiency of the transceiver.

<span class="mw-page-title-main">LTE Advanced</span> Mobile communication standard

LTE Advanced is a mobile communication standard and a major enhancement of the Long Term Evolution (LTE) standard. It was formally submitted as a candidate 4G to ITU-T in late 2009 as meeting the requirements of the IMT-Advanced standard, and was standardized by the 3rd Generation Partnership Project (3GPP) in March 2011 as 3GPP Release 10.

<span class="mw-page-title-main">LTE (telecommunication)</span> Standard for wireless broadband communication for mobile devices

In telecommunications, long-term evolution (LTE) is a standard for wireless broadband communication for mobile devices and data terminals, based on the GSM/EDGE and UMTS/HSPA standards. It improves on those standards' capacity and speed by using a different radio interface and core network improvements. LTE is the upgrade path for carriers with both GSM/UMTS networks and CDMA2000 networks. Because LTE frequencies and bands differ from country to country, only multi-band phones can use LTE in all countries where it is supported.

Continuous Computing was a privately held company based in San Diego and founded in 1998 that provides telecom systems made up of telecom platforms and Trillium software, including protocol software stacks for femtocells and 4G wireless / Long Term Evolution (LTE). The company also sells standalone Trillium software products and ATCA hardware components, as well as professional services. Continuous Computing's Trillium software addresses LTE Femtocells and pico / macro eNodeBs, as well as the Evolved Packet Core (EPC), Mobility Management Entity (MME), Serving Gateway (SWG) and Evolved Packet Data Gateway (ePDG).

<span class="mw-page-title-main">Next Generation Mobile Networks</span>

The Next Generation Mobile Networks (NGMN) Alliance is a mobile telecommunications association of mobile operators, vendors, manufacturers and research institutes. It was founded by major mobile operators in 2006 as an open forum to evaluate candidate technologies to develop a common view of solutions for the next evolution of wireless networks. Its objective is to ensure the successful commercial launch of future mobile broadband networks through a roadmap for technology and friendly user trials. Its office is in Frankfurt, Germany.

ip.access

ip.access Limited is a multinational corporation that designs, manufactures, and markets small cells technologies and infrastructure equipment for GSM, GPRS, EDGE, 3G, 4G and 5G. The company was acquired by Mavenir in September 2020.

AirHop Communications is a privately funded American corporation based in San Diego, CA. AirHop develops radio access network (RAN) software that addresses the installation, operation and performance challenges of multi-layer deployments of small cells in 3G and 4G networks. AirHop's customers are typically base station equipment vendors for wireless network operators.

References

  1. Athanasiadou, Georgia; Fytampanis, Panagiotis; Zarbouti, Dimitra; Tsoulos, G.V.; Gkonis, Panagiotis; Kaklamani, Dimitra (2020). "Radio Network Planning towards 5G mmWave Standalone Small-Ce". Electronics. 9 (2): 399. doi: 10.3390/electronics9020339 .
  2. "FCC Facilitates Wireless Infrastructure Deployment for 5G". Federal Communications Commission. 27 September 2018. Retrieved 30 January 2020.
  3. "What is a Small Cell, and Why Does It Matter". Gunnerson Consulting. 28 January 2020.
  4. "Technology | Small Cells | Qualcomm". Qualcomm. 13 May 2014. Retrieved 19 February 2018.
  5. "Small Cells". Nokia Networks. 26 April 2016. Retrieved 5 April 2023.
  6. "Indoor 5G Small Cells". Ericsson . 9 February 2023. Archived from the original on 5 April 2023. Retrieved 29 June 2023.
  7. "Extending Rural and Remote Coverage using Small Cells" . Retrieved 19 February 2018.
  8. Kang, Xin; Chia, Yeow-Khiang; Sun, Sumei; Chong, Hon Fah (October 2014). "Mobile Data Offloading Through A Third-Party WiFi Access Point: An Operator's Perspective". IEEE Transactions on Wireless Communications. 13 (10): 5340–5351. arXiv: 1408.5245 . doi:10.1109/TWC.2014.2353057. ISSN   1536-1276. S2CID   18395548.
  9. "Heterogeneous Network (HetNet) – Light Reading" . Retrieved 5 April 2023.
  10. Ghosh, Joydev; Roy, Sanjay Dhar (2017). "The Implications of Cognitive Femtocell Based Spectrum Allocation over Macrocell Networks". Wireless Personal Communications. 92 (3): 1125–1143. doi:10.1007/s11277-016-3597-x. S2CID   32573085.
  11. "Small Cell Market Status Statistics Dec 2017". scf.io. Retrieved 5 April 2023.
  12. "Backhaul Technologies for Small Cells, use cases, requirements and solutions". scf.io. Retrieved 19 February 2018.
  13. "Five ways to deploy small cells and the implications for backhaul". CBNL. 2012. Retrieved 5 April 2023.