LTE Advanced

Last updated
LTE Advanced logo LTE Advanced logo.jpg
LTE Advanced logo
LTE Advanced (with carrier aggregation) signal indicator in Android Android LTE Advanced signal indicator.png
LTE Advanced (with carrier aggregation) signal indicator in Android

LTE Advanced is a mobile communication standard and a major enhancement of the Long Term Evolution (LTE) standard. It was formally submitted as a candidate 4G to ITU-T in late 2009 as meeting the requirements of the IMT-Advanced standard, and was standardized by the 3rd Generation Partnership Project (3GPP) in March 2011 as 3GPP Release 10. [1]

LTE Advanced Pro

LTE Advanced Pro is a name for 3GPP release 13 and 14. It is the next-generation cellular standard following LTE Advanced (LTE-A) and supports data rates in excess of 3 Gbit/s using 32-carrier aggregation. It also introduces the concept of License Assisted Access, which allows sharing of licensed and unlicensed spectrum.

In telecommunication, Long-Term Evolution (LTE) is a standard for wireless broadband communication for mobile devices and data terminals, based on the GSM/EDGE and UMTS/HSPA technologies. It increases the capacity and speed using a different radio interface together with core network improvements. The standard is developed by the 3GPP and is specified in its Release 8 document series, with minor enhancements described in Release 9. LTE is the upgrade path for carriers with both GSM/UMTS networks and CDMA2000 networks. The different LTE frequencies and bands used in different countries mean that only multi-band phones are able to use LTE in all countries where it is supported.

4G is the fourth generation of broadband cellular network technology, succeeding 3G. A 4G system must provide capabilities defined by ITU in IMT Advanced. Potential and current applications include amended mobile web access, IP telephony, gaming services, high-definition mobile TV, video conferencing, and 3D television.

Contents

The LTE format was first proposed by NTT DoCoMo of Japan and has been adopted as the international standard. [2] LTE standardization has matured to a state where changes in the specification are limited to corrections and bug fixes. The first commercial services were launched in Sweden and Norway in December 2009 [3] followed by the United States and Japan in 2010. More LTE networks were deployed globally during 2010 as a natural evolution of several 2G and 3G systems, including Global system for mobile communications (GSM) and Universal Mobile Telecommunications System (UMTS) in the 3GPP family as well as CDMA2000 in the 3GPP2 family.

Japan Island country in East Asia

Japan is an island country in East Asia. Located in the Pacific Ocean, it lies off the eastern coast of the Asian continent and stretches from the Sea of Okhotsk in the north to the East China Sea and the Philippine Sea in the south.

Sweden constitutional monarchy in Northern Europe

Sweden, officially the Kingdom of Sweden, is a country in Northern Europe. It borders Norway to the west and north and Finland to the east, and is connected to Denmark in the southwest by a bridge-tunnel across the Öresund Strait. At 450,295 square kilometres (173,860 sq mi), Sweden is the largest country in Northern Europe, the third-largest country in the European Union and the fifth largest country in Europe by area. The capital city is Stockholm. Sweden has a total population of 10.3 million of which 2.5 million have a foreign background. It has a low population density of 22 inhabitants per square kilometre (57/sq mi) and the highest urban concentration is in the central and southern half of the country.

Norway Country in Northern Europe

Norway, officially the Kingdom of Norway, is a Nordic country in Northwestern Europe whose territory comprises of the western and northernmost portion of the Scandinavian Peninsula; the remote island of Jan Mayen and the archipelago of Svalbard are also part of the Kingdom of Norway. The Antarctic Peter I Island and the sub-Antarctic Bouvet Island are dependent territories and thus not considered part of the kingdom. Norway also lays claim to a section of Antarctica known as Queen Maud Land.

The work by 3GPP to define a 4G candidate radio interface technology started in Release 9 with the study phase for LTE-Advanced. Being described as a 3.9G (beyond 3G but pre-4G), the first release of LTE did not meet the requirements for 4G (also called IMT Advanced as defined by the International Telecommunication Union) such as peak data rates up to 1  Gb/s. The ITU has invited the submission of candidate Radio Interface Technologies (RITs) following their requirements in a circular letter, 3GPP Technical Report (TR) 36.913, "Requirements for Further Advancements for E-UTRA (LTE-Advanced)." [4] These are based on ITU's requirements for 4G and on operators’ own requirements for advanced LTE. Major technical considerations include the following:

The 3rd Generation Partnership Project (3GPP) is a standards organization which develops protocols for mobile telephony. Its best known work is the development and maintenance of:

International Mobile Telecommunications-Advanced are the requirements issued by the ITU Radiocommunication Sector (ITU-R) of the International Telecommunication Union (ITU) in 2008 for what is marketed as 4G mobile phone and Internet access service.

International Telecommunication Union Specialized agency of the United Nations

The International Telecommunication Union, originally the International Telegraph Union, is a specialized agency of the United Nations that is responsible for issues that concern information and communication technologies. It is the second oldest international organization after the Rhine Navigation Commission (1815).

World Radiocommunication Conference convention

World Radiocommunication Conference (WRC) is organized by ITU to review and as necessary, revise the Radio Regulations, the international treaty governing the use of the radio-frequency spectrum and the geostationary-satellite and non-geostationary-satellite orbits. It is held every three to four years. Prior to 1993, it was called the World Administrative Radio Conference (WARC); in 1992, at an Additional Plenipotentiary Conference in Geneva, the ITU was restructured, and later conferences became the WRC.

Likewise, 'WiMAX 2', 802.16m, has been approved by ITU as the IMT Advanced family. WiMAX 2 is designed to be backward compatible with WiMAX 1 devices. Most vendors now support conversion of 'pre-4G', pre-advanced versions and some support software upgrades of base station equipment from 3G.

The mobile communication industry and standards organizations have therefore started work on 4G access technologies, such as LTE Advanced.[ when? ] At a workshop in April 2008 in China, 3GPP agreed the plans for work on Long Term Evolution (LTE). [5] A first set of specifications were approved in June 2008. [6] Besides the peak data rate 1  Gb/s as defined by the ITU-R, it also targets faster switching between power states and improved performance at the cell edge. Detailed proposals are being studied within the working groups.[ when? ]

Working group interdisciplinary collaboration of researchers

A working group or working party is a group of experts working together to achieve specified goals. The groups are domain-specific and focus on discussion or activity around a specific subject area. The term can sometimes refer to an interdisciplinary collaboration of researchers working on new activities that would be difficult to sustain under traditional funding mechanisms.

Three technologies from the LTE-Advanced tool-kit – carrier aggregation, 4x4 MIMO and 256QAM modulation in the downlink – if used together and with sufficient aggregated bandwidth, can deliver maximum peak downlink speeds approaching, or even exceeding, 1 Gbit/s. Such networks are often described as ‘Gigabit LTE networks’ mirroring a term that is also used in the fixed broadband industry. [7]

Proposals

The target of 3GPP LTE Advanced is to reach and surpass the ITU requirements. LTE Advanced should be compatible with first release LTE equipment, and should share frequency bands with first release LTE. In the feasibility study for LTE Advanced, 3GPP determined that LTE Advanced would meet the ITU-R requirements for 4G. The results of the study are published in 3GPP Technical Report (TR) 36.912. [8]

One of the important LTE Advanced benefits is the ability to take advantage of advanced topology networks; optimized heterogeneous networks with a mix of macrocells with low power nodes such as picocells, femtocells and new relay nodes. The next significant performance leap in wireless networks will come from making the most of topology, and brings the network closer to the user by adding many of these low power nodes — LTE Advanced further improves the capacity and coverage, and ensures user fairness. LTE Advanced also introduces multicarrier to be able to use ultra wide bandwidth, up to 100 MHz of spectrum supporting very high data rates.

In the research phase many proposals have been studied as candidates for LTE Advanced (LTE-A) technologies. The proposals could roughly be categorized into: [9]

Within the range of system development, LTE-Advanced and WiMAX 2 can use up to 8x8 MIMO and 128-QAM in downlink direction. Example performance: 100 MHz aggregated bandwidth, LTE-Advanced provides almost 3.3 Gbit peak download rates per sector of the base station under ideal conditions. Advanced network architectures combined with distributed and collaborative smart antenna technologies provide several years road map of commercial enhancements.

The 3GPP standards Release 12 added support for 256-QAM.

A summary of a study carried out in 3GPP can be found in TR36.912. [10]

Timeframe and introduction of additional features

Original standardization work for LTE-Advanced was done as part of 3GPP Release 10, which was frozen in April 2011. Trials were based on pre-release equipment. Major vendors support software upgrades to later versions and ongoing improvements.

In order to improve the quality of service for users in hotspots and on cell edges, heterogenous networks (HetNet) are formed of a mixture of macro-, pico- and femto base stations serving corresponding-size areas. Frozen in December 2012, 3GPP Release 11 [11] concentrates on better support of HetNet. Coordinated Multi-Point operation (CoMP) is a key feature of Release 11 in order to support such network structures. Whereas users located at a cell edge in homogenous networks suffer from decreasing signal strength compounded by neighbor cell interference, CoMP is designed to enable use of a neighboring cell to also transmit the same signal as the serving cell, enhancing quality of service on the perimeter of a serving cell. In-device Co-existence (IDC) is another topic addressed in Release 11. IDC features are designed to ameliorate disturbances within the user equipment caused between LTE/LTE-A and the various other radio subsystems such as WiFi, Bluetooth, and the GPS receiver. Further enhancements for MIMO such as 4x4 configuration for the uplink were standardized.

The higher number of cells in HetNet results in user equipment changing the serving cell more frequently when in motion. The ongoing work on LTE-Advanced [12] in Release 12, amongst other areas, concentrates on addressing issues that come about when users move through HetNet, such as frequent hand-overs between cells. It also included use of 256-QAM.

First technology demonstrations and field trials

This list covers technology demonstrations and field trials up to the year 2014, paving the way for a wider commercial deployment of the VoLTE technology worldwide. From 2014 onwards various further operators trialled and demonstrated the technology for future deployment on their respective networks. These are not covered here. Instead a coverage of commercial deployments can be found in the section below.

CompanyCountryDateNote
NTT DoCoMo Flag of Japan.svg  Japan February 2007 [13] The operator announced the completion of a 4G trial where it achieved a maximum packet transmission rate of approximately 5 Gbit/s in the downlink using 12 transmit and 12 receive antennas and 100 MHz frequency bandwidth to a mobile station moving at 10 km/h.
Agilent Technologies Flag of Spain.svg  Spain February 2011 [14] The vendor demonstrated at Mobile World Congress the industry's first test solutions for LTE-Advanced with both signal generation and signal analysis solutions.
Ericsson Flag of Sweden.svg  Sweden June 2011 [15] The vendor demonstrated LTE-Advanced in Kista.
touch Flag of Lebanon.svg  Lebanon April 2013 [16] The operator trialed LTE-Advanced with Chinese vendor Huawei and combined 800 MHz spectrum and 1.8 GHz spectrum. touch achieved 250 Mbit/s.
Vodafone Flag of New Zealand.svg  New Zealand May 2013 [17] The operator trialed LTE-Advanced with Nokia Networks and combined 1.8 GHz spectrum and 700 MHz spectrum. Vodafone achieved just below 300 Mbit/s.
A1 Flag of Austria.svg  Austria June 2013 [18] The operator trialed LTE-Advanced with Ericsson and NSN using 4x4 MIMO. A1 achieved 580 Mbit/s.
Turkcell Flag of Turkey.svg  Turkey August 2013 [19] The operator trialed LTE-Advanced in Istanbul with Chinese vendor Huawei. Turkcell achieved 900 Mbit/s.
Telstra Flag of Australia (converted).svg  Australia August 2013 [20] The operator trialed LTE-Advanced with Swedish vendor Ericsson and combined 900 MHz spectrum and 1.8 GHz spectrum.
SMART Flag of the Philippines.svg  Philippines August 2013 [21] The operator trialed LTE-Advanced with Chinese vendor Huawei and combined 2.1 GHz spectrum and 1.80 GHz spectrum bands and achieved 200 Mbit/s.
SoftBank Flag of Japan.svg  Japan September 2013 [22] The operator trialed LTE-Advanced in Tokyo with Chinese vendor Huawei. Softbank used the 3.5 GHz spectrum band and achieved 770 Mbit/s.
beCloud/ MTS Flag of Belarus.svg  Belarus October 2013 [23] The operator trialed LTE-Advanced with Chinese vendor Huawei.
SFR Flag of France.svg  France October 2013 [24] The operator trialed LTE-Advanced in Marseille and combined 800 MHz spectrum and 2.6 GHz spectrum. SFR achieved 174 Mbit/s.
EE Flag of the United Kingdom.svg  United Kingdom November 2013 [25] The operator trialed LTE-Advanced in London with Chinese vendor Huawei and combined 20 MHz of 1.8 GHz spectrum and 20 MHz of 2.6 GHz spectrum. EE achieved 300 Mbit/s which is equal to category 6 LTE.
O2 Flag of Germany.svg  Germany November 2013 [26] The operator trialed LTE-Advanced in Munich with Chinese vendor Huawei and combined 10 MHz of 800 MHz spectrum and 20 MHz of 2.6 GHz spectrum. O2 achieved 225 Mbit/s.
SK Telecom Flag of South Korea.svg  South Korea November 2013 [27] The operator trialed LTE-Advanced and combined 10 MHz of 850 MHz spectrum and 20 MHz of 1.8 GHz spectrum. SK Telecom achieved 225 Mbit/s.
Vodafone Flag of Germany.svg  Germany November 2013 [28] The operator trialed LTE-Advanced in Dresden with Swedish vendor Ericsson and combined 10 MHz of 800 MHz spectrum and 20 MHz of 2.6 GHz spectrum. Vodafone achieved 225 Mbit/s.
Telstra Flag of Australia (converted).svg  Australia December 2013 [29] The operator trialed LTE-Advanced with Swedish vendor Ericsson and combined 20 MHz of 1.8 GHz spectrum and 20 MHz of 2.6 GHz spectrum. Telstra achieved 300 Mbit/s which is equal to category 6 LTE.
Optus Flag of Australia (converted).svg  Australia December 2013 [30] The operator trialed TD-LTE-Advanced with Chinese vendor Huawei and combined two 20 MHz channels of 2.3 GHz spectrum. Optus achieved over 160 Mbit/s.
Entel Chile Flag of Chile.svg  Chile September 2015 [31] The operator trialed LTE-Advanced in Rancagua using 15 MHz of 700 MHz and 20 MHz of 2600 MHz spectrum, achieving over 200 Mbit/s.
Claro Brasil Flag of Brazil.svg  Brazil December 2015 [32] The Claro Brasil presented in Rio Verde the first tests with 4.5G technology, LTE Advanced, which offers an internet speed of up to 300Mbit/s.
AIS Flag of Thailand.svg  Thailand March 2016 [33] The operator launched the first 4.5G on LTE-U/LAA network in Bangkok with the combination of 1800 MHz spectrum and 2100 MHz spectrum using Carrier Aggregation (CA), 4x4 MIMO, DL256QAM/UL64QAM and the use of LTE-Unlicensed (LTE-U) to facilitate high-speed network. AIS achieved download speed up to 784.5 Mbit/s and upload speed 495 Mbit/s. [34] This was made possible by Joint Development Center (JIC) the special R&D program between AIS and Huawei.
MagtiCom Flag of Georgia.svg  Georgia May 2016 [35] The operator trialed LTE-Advanced in Tbilisi and combined the 800 MHz with its existing 1800 MHz spectrum. MagtiCom achieved download speed 185 Mbit/s and upload speed 75 Mbit/s.
Ucom Flag of Armenia.svg  Armenia September 2016 [36] The operator trialed LTE-Advanced with Swedish vendor Ericsson. Ucom achieved 250 Mbit/s download speed which is equal to category 6 LTE.
Altel Flag of Kazakhstan.svg  Kazakhstan April 2017 [37] The operator launched LTE-Advanced in 12 cities across Kazakhstan. Altel achieved 225 Mbit/s download speed. LTE-Advanced (4G+) Technology is up to be launched in 5 more cities in Kazakhstan in May 2017.
Bite Latvija Flag of Latvia.svg  Latvia September 2016 [38] The operator launched 8 4.5G cell stations in Riga after testing in partnership with Huawei and the Riga Technical University on June 15, 2017.
Wi-Tribe Flag of Pakistan.svg  Pakistan May 2017 [39] The operator first tested their LTE-A network in May 2017 over the 3.5 GHz band, and it was then made officially available in Lahore, Pakistan, with more cities to follow. Wi-Tribe achieved speeds of up to 200 Mbit/s over their new LTE-A network. This was done using equipment from Huawei.
Telcel Flag of Mexico.svg  Mexico March 2018 [40] The operator offered the service in Mexico City and other 10 cities nationwide on March 14, 2018.
AirtelIndiaApril 2012On 10 April 2012, Airtel launched 4G services through dongles and modems using TD-LTE technology in Kolkata, becoming the first company in India to offer 4G services. The Kolkata launch was followed by launches in Bangalore (7 May 2012), Pune (18 October 2012), and Chandigarh, Mohali and Panchkula (25 March 2013).

Deployment

An LTE Advanced base station installed in Iraq for provisioning of broadband wireless Internet service. LTE Advanced Tower in Iraq.jpg
An LTE Advanced base station installed in Iraq for provisioning of broadband wireless Internet service.

The deployment of LTE-Advanced in progress in various LTE networks.

In August 2019, the Global mobile Suppliers Association (GSA) reported that there were 304 commercially launched LTE-Advanced networks in 134 countries. Overall, 335 operators are investing in LTE-Advanced (in the form of tests, trials, deployments or commercial service provision) in 141 countries. [41]

See also

Bibliography

Related Research Articles

The Universal Mobile Telecommunications System (UMTS) is a third generation mobile cellular system for networks based on the GSM standard. Developed and maintained by the 3GPP, UMTS is a component of the International Telecommunications Union IMT-2000 standard set and compares with the CDMA2000 standard set for networks based on the competing cdmaOne technology. UMTS uses wideband code division multiple access (W-CDMA) radio access technology to offer greater spectral efficiency and bandwidth to mobile network operators.

WiMAX wireless broadband standard

WiMAX is a family of wireless broadband communication standards based on the IEEE 802.16 set of standards, which provide multiple physical layer (PHY) and Media Access Control (MAC) options.

CDMA2000

CDMA2000 is a family of 3G mobile technology standards for sending voice, data, and signaling data between mobile phones and cell sites. It is developed by 3GPP2 as a backwards-compatible successor to second-generation cdmaOne (IS-95) set of standards and used especially in North America and South Korea.

Multimedia Broadcast Multicast Services (MBMS) is a point-to-multipoint interface specification for existing and upcoming 3GPP cellular networks, which is designed to provide efficient delivery of broadcast and multicast services, both within a cell as well as within the core network. For broadcast transmission across multiple cells, it defines transmission via single-frequency network configurations. The specification is referred to as Evolved Multimedia Broadcast Multicast Services (eMBMS) when transmissions are delivered through an LTE network. eMBMS is also known as LTE Broadcast.

E-UTRA air interface of 3GPP LTE upgrade path for mobile networks

E-UTRA is the air interface of 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) upgrade path for mobile networks. It is an acronym for Evolved Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access, also referred to as the 3GPP work item on the Long Term Evolution (LTE) also known as the Evolved Universal Terrestrial Radio Access (E-UTRA) in early drafts of the 3GPP LTE specification. E-UTRAN is the initialism of Evolved UMTS Terrestrial Radio Access Network and is the combination of E-UTRA, user equipment (UE), and E-UTRAN Node B or Evolved Node B (EnodeB).

High Speed Packet Access Communications protocols

High Speed Packet Access (HSPA) is an amalgamation of two mobile protocols, High Speed Downlink Packet Access (HSDPA) and High Speed Uplink Packet Access (HSUPA), that extends and improves the performance of existing 3G mobile telecommunication networks using the WCDMA protocols. A further improved 3GPP standard, Evolved High Speed Packet Access, was released late in 2008 with subsequent worldwide adoption beginning in 2010. The newer standard allows bit-rates to reach as high as 337 Mbit/s in the downlink and 34 Mbit/s in the uplink. However, these speeds are rarely achieved in practice.

Mobile broadband

Mobile broadband is the marketing term for wireless Internet access through a portable modem, USB wireless modem, or a tablet/smartphone or other mobile device. The first wireless Internet access became available in 1991 as part of the second generation (2G) of mobile phone technology. Higher speeds became available in 2001 and 2006 as part of the third (3G) and fourth (4G) generations. In 2011, 90% of the world's population lived in areas with 2G coverage, while 45% lived in areas with 2G and 3G coverage. Mobile broadband uses the spectrum of 225 MHz to 3700 MHz.

The UMTS frequency bands are radio frequencies used by third generation (3G) wireless Universal Mobile Telecommunications System networks. They were allocated by delegates to the World Administrative Radio Conference (WARC-92) held in Málaga-Torremolinos, Spain between 3 February 1992 and 3 March 1992. Resolution 212 (Rev.WRC-97), adopted at the World Radiocommunication Conference held in Geneva, Switzerland in 1997, endorsed the bands specifically for the International Mobile Telecommunications-2000 (IMT-2000) specification by referring to S5.388, which states "The bands 1,885-2,025 MHz and 2,110-2,200 MHz are intended for use, on a worldwide basis, by administrations wishing to implement International Mobile Telecommunications 2000 (IMT-2000). Such use does not preclude the use of these bands by other services to which they are allocated. The bands should be made available for IMT-2000 in accordance with Resolution 212 ." To accommodate the reality that these initially defined bands were already in use in various regions of the world, the initial allocation has been amended multiple times to include other radio frequency bands.

Evolved High Speed Packet Access technical standard for wireless, broadband telecommunication

Evolved High Speed Packet Access, or HSPA+, or HSPA(Plus), or HSPAP is a technical standard for wireless broadband telecommunication. It is the second phase of HSPA which has been introduced in 3GPP release 7 and being further improved in later 3GPP releases. HSPA+ can achieve data rates of up to 42.2 Mbit/s. It introduces antenna array technologies such as beamforming and multiple-input multiple-output communications (MIMO). Beam forming focuses the transmitted power of an antenna in a beam towards the user's direction. MIMO uses multiple antennas at the sending and receiving side. Further releases of the standard have introduced dual carrier operation, i.e. the simultaneous use of two 5 MHz carriers. The technology also delivers significant battery life improvements and dramatically quicker wake-from-idle time, delivering a true always-on connection. HSPA+ is an evolution of HSPA that upgrades the existing 3G network and provides a method for telecom operators to migrate towards 4G speeds that are more comparable to the initially available speeds of newer LTE networks without deploying a new radio interface. HSPA+ should not be confused with LTE though, which uses an air interface based on Orthogonal frequency-division multiple access modulation and multiple access.

5G fifth generation of cellular mobile communications

5G is the fifth generation cellular network technology. The industry association 3GPP defines any system using "5G NR" software as "5G", a definition that came into general use by late 2018. Others may reserve the term for systems that meet the requirements of the ITU IMT-2020. 3GPP will submit their 5G NR to the ITU. It follows 2G, 3G and 4G and their respective associated technologies.

Altair Semiconductor is a developer of high performance single-mode Long Term Evolution (LTE) chipsets. The company's product portfolio includes baseband processors, RF transceivers and a range of reference hardware products. Founded in 2005, Altair employs 190 employees in its Hod Hasharon, Israel headquarters and R&D center, and has regional offices in the United States, Japan, China, Taiwan and India. Altair Semiconductor was the first chipset vendor to receive certification from Verizon Wireless to run on its 4G LTE network. Altair has also powered several devices launched on Verizon's network including the Ellipsis 7 tablet and HP Chromebook 11.6"LTE. In January 2016 it was announced that Sony was acquiring Altair for $212 Million.

Long Term Evolution (LTE) telecommunications networks use several frequency bands with associated bandwidths.

The Asia-Pacific Telecommunity (APT) band plan is a type of segmentation of the 698–806 MHz band formalized by the APT in 2008–2010 and specially configured for the deployment of mobile broadband technologies. This segmentation exists in two variants, FDD and TDD, that have been standardized by the 3rd Generation Partnership Project (3GPP) and recommended by the International Telecommunications Union (ITU) as segmentations A5 and A6, respectively. The APT band plan has been designed to enable the most efficient use of available spectrum. Therefore, this plan divides the band into contiguous blocks of frequencies that are as large as possible taking account of the need to avoid interference with services in other frequency bands. As the result, the TDD option includes 100 MHz of continuous spectrum, while the FDD option comprises two large blocks, one of 45 MHz for uplink transmission in the lower part of the band and the other also of 45 MHz for downlink transmission in the upper part. As defined in the standard, both FDD and TDD schemes for the 700 MHz band include guard bands of 5 MHz and 3 MHz at their lower and upper edges, respectively. The FDD version also includes a center gap of 10 MHz. The guardbands serve the purpose of mitigating interference with adjacent bands while the FDD center gap is required to avoid interference between uplink and downlink transmissions. The two arrangements are shown graphically in figures 1 and 2.

International Mobile Telecommunications-2020 are the requirements issued by the ITU Radiocommunication Sector (ITU-R) of the International Telecommunication Union (ITU) in 2015 for 5G networks, devices and services.

The Qualcomm Snapdragon LTE modems are a series of 4G LTE, LTE Advanced and LTE Advanced Pro modems found in many phones, tablets, laptops, watches and even cars.

Carrier aggregation is a technique used in wireless communication to increase the data rate per user, whereby multiple frequency blocks are assigned to the same user. The maximum possible data rate per user is increased the more frequency blocks are assigned to a user. The sum data rate of a cell is increased as well because of a better resource utilization. In addition load balancing is possible with carrier aggregation.

References

  1. Stefan Parkvall, Erik Dahlman, Anders Furuskär et al.; Ericsson, Robert Syputa, Maravedis; ITU global standard for international mobile telecommunications ´IMT-Advanced´ LTE Advanced - Evolving LTE towards IMT-Advanced; Vehicular Technology Conference, 2014. VTC 2014-Fall. IEEE 68th 21-24 Sept. 2014 Page(s):1 - 5.
  2. Faster cell phone services planned
  3. "TeliaSonera launches world's first 4G mobile network". swedishwire. Retrieved 25 November 2013.
  4. "Requirements for further advancements for Evolved Universal Terrestrial Radio Access (E-UTRA) (LTE-Advanced)"
  5. "Beyond 3G: "LTE Advanced" Workshop, Shenzhen, China". Archived from the original on 2008-09-13. Retrieved 2008-09-12.
  6. 3GPP specification: Requirements for further advancements for E-UTRA (LTE Advanced)
  7. GSA: Gigabit LTE Networks: Analysis of Deployments Worldwide (February 2019)
  8. Agilent "Archived copy" (PDF). Archived from the original (PDF) on 2011-03-03. Retrieved 2011-07-28.CS1 maint: archived copy as title (link), Introducing LTE-Advanced, pg. 6 , March 8, 2011, accessed July 28, 2011.
  9. Nomor Research: White Paper on LTE Advanced
  10. 3GPP Technical Report: Feasibility study for Further Advancements for E-UTRA (LTE Advanced)
  11. Introduction to LTE-Advanced Rel.11
  12. "3GPP News & Events, Dec.12th, 2012 and Apr.8th, 2013 entries". Archived from the original on 2013-07-17. Retrieved 2013-07-17.
  13. "NTT DoCoMo Achieves World's First 5 Gbit/s Packet Transmission in 4G Field Experiment". NTT DoCoMo. Archived from the original on 2008-09-25. Retrieved 2008-09-12.
  14. "Agilent Technologies Introduces Industry's First LTE-Advanced Signal Generation, Analysis Solutions". Agilent.
  15. "Ericsson demonstrates LTE Advanced in Sweden". Telecompaper. 2011-06-28. Retrieved 2014-08-13.
  16. "Touch, Huawei trial 250Mbps LTE FDD 800MHz/1800MHz carrier aggregation". TeleGeography. 2013-04-08. Retrieved 2014-08-24.
  17. "Vodafone shows off next-gen mobile broadband". NZ Herald. 2013-05-24.
  18. "A1 TELEKOM AUSTRIA DEMOS 580MBPS LTE-A SPEEDS WITH ERICSSON, NSN HARDWARE". Mobile Europe. 2013-06-06. Retrieved 2014-04-30.
  19. "Turkish delight? Turkcell unveils 900Mbps transmission speeds in LTE-A trial". TeleGeography. 2013-08-02. Retrieved 2014-11-14.
  20. "World's first commercial LTE-Advanced call on 1800MHz and 900MHz". Ericsson. 2013-08-12. Retrieved 2014-04-30.
  21. J.M. Tuazon (21 August 2013). "200MBPS IN DAVAO - Smart tests LTE-Advanced system down south". Interaksyon. Archived from the original on 21 August 2013. Retrieved 21 August 2013.
  22. "Softbank's trial LTE-A in 3.5GHz band achieves 770Mbps". TeleGeography. 2013-09-13. Retrieved 2014-08-13.
  23. "beCloud to test LTE-A". TeleGeography. 2013-10-10. Retrieved 2014-08-13.
  24. "SFR completes 'first' LTE Advanced trials in France". FierceWirelessEurope. 2013-10-18. Retrieved 2014-04-30.
  25. "EE launches 'world's fastest' LTE-A network in London". Telecoms.com. 2013-11-05. Retrieved 2013-12-27.
  26. "Now available at Telefónica: The fastest LTE radio cell in Germany and mobile VoLTE in live network". Telefónica. 2013-11-14. Retrieved 2014-04-30.
  27. "[넓고 빠른 광대역 LTE-A] #1. 3배 빠른 광대역 LTE-A 시대가 열린다!" (in Korean). SK Telecom. 2013-11-28. Retrieved 2014-05-16.
  28. "Vodafone zeigt in Dresden das schnellste Mobilfunknetz der Republik" (in German). Vodafone. 2013-11-15. Retrieved 2014-04-30.
  29. "Telstra hits 300 Mbps in LTE-A trial". Computerworld. 2013-12-06. Retrieved 2014-03-24.
  30. "Optus tests TD-LTE carrier aggregation in Melbourne". iTnews. 2013-12-19. Retrieved 2014-03-29.
  31. "Entel Chile carries out first LTE-A trial". BNAmericas. 2015-09-22. Retrieved 2018-04-10.
  32. "Claro faz primeiro teste externo com LTE Advanced na faixa de 700 MHz". Telesintese. 2015-12-15. Retrieved 2016-03-29.
  33. "AIS launches the world's first 4.5G network in Thailand". 2016-03-24. Retrieved 2017-12-26.
  34. "Take tour on the new AIS Next-G ready network" (in Thai). Retrieved 2017-12-27.
  35. "MagtiCom launches LTE-Advanced network in Georgia". www.ucom.am. Retrieved 2016-06-06.
  36. "Ucom Deployed Ericsson's Latest 4G+ Technology for the First Time in Armenia". www.ucom.am. Retrieved 2017-02-06.
  37. "Altel: LTE-Advanced (4G+) Technology for the First Time in Kazakhstan". dknews.kz.
  38. "By sounding off the Baltic Drummers' Summit, Bite unveils the first 4.5G network in Latvia with power" (in Latvian). Retrieved 2017-09-18.
  39. "Wi-tribe Becomes Pakistan's First Operator to Cross 200Mbps Internet Speeds". 2017-08-28. Retrieved 2017-10-11.
  40. "Llega a México la GigaRed 4.5G de Telcel".
  41. GSA: LTE-Advanced Status Worldwide – August 2019

Resources (white papers, technical papers, application notes)