Enhanced Data rates for GSM Evolution

Last updated
EDGE sign shown in notification bar on an Android-based smartphone EDGE symbol Android.png
EDGE sign shown in notification bar on an Android-based smartphone

Enhanced Data rates for GSM Evolution (EDGE), also known as 2.75G, Enhanced GPRS (EGPRS), IMT Single Carrier (IMT-SC), and Enhanced Data rates for Global Evolution, is a 2G digital mobile phone technology for data transmission. It is a subset of General Packet Radio Service (GPRS) on the GSM network and improves upon it offering speeds close to 3G technology, hence the name 2.75G. It is also recognized as part of the International Mobile Telecommunications - 2000 (IMT-2000) standard.

Contents

EDGE was deployed on GSM networks beginning in 2003 – initially by Cingular (now AT&T) in the United States. [1] Through the introduction of sophisticated methods of coding and transmitting data, EDGE delivers higher bit-rates per radio channel, resulting in a threefold increase in capacity and performance compared with an ordinary GSM/GPRS connection - originally a max speed of 384 kbit/s. [2] EDGE can be used for any packet switched application, such as an Internet connection.

EDGE is standardized also by 3GPP as part of the GSM family. A variant, so called Compact-EDGE, was developed for use in a portion of Digital AMPS network spectrum. [3] EDGE is part of ITU's 3G definition. [4] Evolved EDGE continues in release 7 of the 3GPP standard providing reduced latency and more than doubled performance e.g. to complement High-Speed Packet Access (HSPA). Peak bit-rates of up to 1 Mbit/s and typical bit-rates of 400 kbit/s can be expected.

Technology

Cellular network standards and generation timeline Cellular network standards and generation timeline.svg
Cellular network standards and generation timeline

EDGE/EGPRS is implemented as a bolt-on enhancement for 2.5G GSM/GPRS networks, making it easier for existing GSM carriers to upgrade to it. EDGE is a superset to GPRS and can function on any network with GPRS deployed on it, provided the carrier implements the necessary upgrade. EDGE requires no hardware or software changes to be made in GSM core networks. EDGE-compatible transceiver units must be installed and the base station subsystem needs to be upgraded to support EDGE. If the operator already has this in place, which is often the case today, the network can be upgraded to EDGE by activating an optional software feature. Today EDGE is supported by all major chip vendors for both GSM and WCDMA/HSPA.

Transmission techniques

In addition to Gaussian minimum-shift keying (GMSK), EDGE uses higher-order PSK/8 phase-shift keying (8PSK) for the upper five of its nine modulation and coding schemes. EDGE produces a 3-bit word for every change in carrier phase. This effectively triples the gross data rate offered by GSM. EDGE, like GPRS, uses a rate adaptation algorithm that adapts the modulation and coding scheme (MCS) according to the quality of the radio channel, and thus the bit rate and robustness of data transmission. It introduces a new technology not found in GPRS, incremental redundancy, which, instead of retransmitting disturbed packets, sends more redundancy information to be combined in the receiver. This increases the probability of correct decoding.

EDGE can carry a bandwidth up to 236 kbit/s (with end-to-end latency of less than 150 ms) for 4 timeslots (theoretical maximum is 473.6 kbit/s for 8 timeslots) in packet mode. This means it can handle four times as much traffic as standard GPRS. EDGE meets the International Telecommunication Union's requirement for a 3G network, and has been accepted by the ITU as part of the IMT-2000 family of 3G standards. [4] It also enhances the circuit data mode called HSCSD, increasing the data rate of this service.

EDGE modulation and coding scheme (MCS)

The channel encoding process in GPRS as well as EGPRS/EDGE consists of two steps: first, a cyclic code is used to add parity bits, which are also referred to as the Block Check Sequence, followed by coding with a possibly punctured convolutional code. [5] In GPRS, the Coding Schemes CS-1 to CS-4 specify the number of parity bits generated by the cyclic code and the puncturing rate of the convolutional code. [5] In GPRS Coding Schemes CS-1 through CS-3, the convolutional code is of rate 1/2, i.e. each input bit is converted into two coded bits. [5] In Coding Schemes CS-2 and CS-3, the output of the convolutional code is punctured to achieve the desired code rate. [5] In GPRS Coding Scheme CS-4, no convolutional coding is applied. [5]

In EGPRS/EDGE, the modulation and coding schemes MCS-1 to MCS-9 take the place of the coding schemes of GPRS, and additionally specify which modulation scheme is used, GMSK or 8PSK. [5] MCS-1 through MCS-4 use GMSK and have performance similar (but not equal) to GPRS, while MCS-5 through MCS-9 use 8PSK. [5] In all EGPRS modulation and coding schemes, a convolutional code of rate 1/3 is used, and puncturing is used to achieve the desired code rate. [5] In contrast to GPRS, the Radio Link Control (RLC) and medium access control (MAC) headers and the payload data are coded separately in EGPRS. [5] The headers are coded more robustly than the data. [5]

GPRS
coding scheme
Bitrate including RLC/MAC overhead [lower-alpha 1] [lower-alpha 2]
(kbit/s/slot)
Bitrate excluding RLC/MAC overhead [lower-alpha 3]
(kbit/s/slot)
Modulation Code rate
CS-19.208.00GMSK1/2
CS-213.5512.00GMSK≈2/3
CS-315.7514.40GMSK≈3/4
CS-421.5520.00GMSK1
EDGE modulation and coding
scheme (MCS)
Bitrate including RLC/MAC overhead [lower-alpha 1]
(kbit/s/slot)
Bitrate excluding RLC/MAC overhead [lower-alpha 3]
(kbit/s/slot)
ModulationData
code rate
Header
code rate
MCS-19.208.00GMSK≈0.53≈0.53
MCS-211.6010.40GMSK≈0.66≈0.53
MCS-315.2014.80GMSK≈0.85≈0.53
MCS-418.0016.80GMSK1≈0.53
MCS-522.8021.608PSK≈0.371/3
MCS-630.0028.808PSK≈0.491/3
MCS-745.2044.008PSK≈0.76≈0.39
MCS-854.8053.608PSK≈0.92≈0.39
MCS-959.6058.408PSK1≈0.39
  1. 1 2 This is rate at which the RLC/MAC layer protocol data unit (PDU) (called a radio block) is transmitted. As shown in TS 44.060 section 10.0a.1, [6] a radio block consists of MAC header, RLC header, RLC data unit and spare bits. The RLC data unit represents the payload, the rest is overhead. The radio block is coded by the convolutional code specified for a particular Coding Scheme, which yields the same PHY layer data rate for all Coding Schemes.
  2. Cited in various sources, e.g. in TS 45.001 table 1. [5] is the bitrate including the RLC/MAC headers, but excluding the uplink state flag (USF), which is part of the MAC header, [7] yielding a bitrate that is 0.15 kbit/s lower.
  3. 1 2 The net bitrate here is the rate at which the RLC/MAC layer payload (the RLC data unit) is transmitted. As such, this bit rate excludes the header overhead from the RLC/MAC layers.

Evolved EDGE

Evolved EDGE, also called EDGE Evolution and 2.875G, is a bolt-on extension to the GSM mobile telephony standard, which improves on EDGE in a number of ways. Latencies are reduced by lowering the Transmission Time Interval by half (from 20 ms to 10 ms). Bit rates are increased up to 1 Mbit/s peak bandwidth and latencies down to 80 ms using dual carrier, higher symbol rate and higher-order modulation (32QAM and 16QAM instead of 8PSK), and turbo codes to improve error correction. This results in real world downlink speeds of up to 600 kbit/s. [8] Further the signal quality is improved using dual antennas improving average bit-rates and spectrum efficiency.

The main intention of increasing the existing EDGE throughput is that many operators would like to upgrade their existing infrastructure rather than invest on new network infrastructure. Mobile operators have invested billions in GSM networks, many of which are already capable of supporting EDGE data speeds up to 236.8 kbit/s. With a software upgrade and a new device compliant with Evolved EDGE (like an Evolved EDGE smartphone) for the user, these data rates can be boosted to speeds approaching 1 Mbit/s (i.e. 98.6 kbit/s per timeslot for 32QAM). Many service providers may not invest in a completely new technology like 3G networks. [9]

Considerable research and development happened throughout the world for this new technology. A successful trial by Nokia Siemens and "one of China's leading operators" has been achieved in a live environment. [9] With the introduction for more advanced wireless technologies like UMTS and LTE, which also focus on a network coverage layer on low frequencies and the upcoming phase-out and shutdown of 2G mobile networks, it is very unlikely that Evolved EDGE will ever see any deployment on live networks. Up to now (as of 2016) there are no commercial networks which support the Evolved EDGE standard (3GPP Rel-7).

Technology

Reduced Latency

With Evolved EDGE come three major features designed to reduce latency over the air interface.

In EDGE, a single RLC data block (ranging from 23 to 148 bytes of data) is transmitted over four frames, using a single time slot. On average, this requires 20 ms for one way transmission. Under the RTTI scheme, one data block is transmitted over two frames in two timeslots, reducing the latency of the air interface to 10 ms.

In addition, Reduced Latency also implies support of Piggy-backed ACK/NACK (PAN), in which a bitmap of blocks not received is included in normal data blocks. Using the PAN field, the receiver may report missing data blocks immediately, rather than waiting to send a dedicated PAN message.

A final enhancement is RLC-non persistent mode. With EDGE, the RLC interface could operate in either acknowledged mode, or unacknowledged mode. In unacknowledged mode, there is no retransmission of missing data blocks, so a single corrupt block would cause an entire upper-layer IP packet to be lost. With non-persistent mode, an RLC data block may be retransmitted if it is less than a certain age. Once this time expires, it is considered lost, and subsequent data blocks may then be forwarded to upper layers.

Higher modulation schemes

Both uplink and downlink throughput is improved by using 16 or 32 QAM (quadrature amplitude modulation), along with turbo codes and higher symbol rates.

Enhanced CSD

A lesser-known version of the EDGE standard is Enhanced Circuit Switched Data (ECSD), which is circuit switched. [10]

Networks

The Global mobile Suppliers Association (GSA) states that, [11] as of May 2013, there were 604 GSM/EDGE networks in 213 countries, from a total of 606 mobile network operator commitments in 213 countries.

See also

Related Research Articles

<span class="mw-page-title-main">DECT</span> ETSI standard for cordless telephony

Digital Enhanced Cordless Telecommunications (DECT) is a cordless telephony standard maintained by ETSI. It originated in Europe, where it is the common standard, replacing earlier standards, such as CT1 and CT2. Since the DECT-2020 standard onwards, it also includes IoT communication.

<span class="mw-page-title-main">GSM</span> Cellular telephone network standard

The Global System for Mobile Communications (GSM) is a standard developed by the European Telecommunications Standards Institute (ETSI) to describe the protocols for second-generation (2G) digital cellular networks used by mobile devices such as mobile phones and tablets. GSM is also a trade mark owned by the GSM Association. "GSM" may also refer to the voice codec initially used in GSM.

<span class="mw-page-title-main">General Packet Radio Service</span> Packet oriented mobile data service on 2G and 3G

General Packet Radio Service (GPRS), also called 2.5G, is a mobile data standard on the 2G cellular communication network's global system for mobile communications (GSM). Networks and mobile devices with GPRS started to roll out around the year 2001. At the time of introduction it offered for the first time seamless mobile data transmission using packet data for an "always-on" connection, providing improved Internet access for web, email, WAP services, and Multimedia Messaging Service (MMS).

The Universal Mobile Telecommunications System (UMTS) is a 3G mobile cellular system for networks based on the GSM standard. Developed and maintained by the 3GPP, UMTS is a component of the International Telecommunication Union IMT-2000 standard set and compares with the CDMA2000 standard set for networks based on the competing cdmaOne technology. UMTS uses wideband code-division multiple access (W-CDMA) radio access technology to offer greater spectral efficiency and bandwidth to mobile network operators.

In telecommunication, a convolutional code is a type of error-correcting code that generates parity symbols via the sliding application of a boolean polynomial function to a data stream. The sliding application represents the 'convolution' of the encoder over the data, which gives rise to the term 'convolutional coding'. The sliding nature of the convolutional codes facilitates trellis decoding using a time-invariant trellis. Time invariant trellis decoding allows convolutional codes to be maximum-likelihood soft-decision decoded with reasonable complexity.

<span class="mw-page-title-main">3G</span> Third generation of wireless mobile telecommunications technology

3G is the third generation of wireless mobile telecommunications technology. It is the upgrade to 2G, 2.5G, GPRS and 2.75G Enhanced Data Rates for GSM Evolution networks, offering faster data transfer, and better voice quality. This network was superseded by 4G, and later by 5G. This network is based on a set of standards used for mobile devices and mobile telecommunications services and networks that comply with the International Mobile Telecommunications-2000 (IMT-2000) specifications set by the International Telecommunication Union. 3G is used in wireless voice telephony, mobile Internet access, fixed wireless Internet access, video calls and mobile TV.

IMT-2000 is the global standard for third generation (3G) wireless communications as defined by the International Telecommunication Union.

IS-54 and IS-136 are second-generation (2G) mobile phone systems, known as Digital AMPS (D-AMPS), and most often referred to as TDMA, are a further development of the North American 1G mobile system Advanced Mobile Phone System (AMPS). It was once prevalent throughout the Americas, particularly in the United States and Canada since the first commercial network was deployed in 1993. D-AMPS is considered end-of-life, and existing networks have mostly been replaced by GSM/GPRS or CDMA2000 technologies.

4G is the fourth generation of broadband cellular network technology, succeeding 3G and preceding 5G. A 4G system must provide capabilities defined by the International Telecommunication Union (ITU) in IMT Advanced. Potential and current applications include amended mobile web access, IP telephony, gaming services, high-definition mobile TV, video conferencing, and 3D television.

<span class="mw-page-title-main">Base station subsystem</span> Section of cellular telephone network

The base station subsystem (BSS) is the section of a traditional cellular telephone network which is responsible for handling traffic and signaling between a mobile phone and the network switching subsystem. The BSS carries out transcoding of speech channels, allocation of radio channels to mobile phones, paging, transmission and reception over the air interface and many other tasks related to the radio network.

<span class="mw-page-title-main">Cellular network</span> Communication network

A cellular network or mobile network is a telecommunications network where the link to and from end nodes is wireless and the network is distributed over land areas called cells, each served by at least one fixed-location transceiver. These base stations provide the cell with the network coverage which can be used for transmission of voice, data, and other types of content. A cell typically uses a different set of frequencies from neighboring cells, to avoid interference and provide guaranteed service quality within each cell.

<span class="mw-page-title-main">Evolution-Data Optimized</span> Telecommunications standard for the wireless transmission of data through radio signals

Evolution-Data Optimized is a telecommunications standard for the wireless transmission of data through radio signals, typically for broadband Internet access. EV-DO is an evolution of the CDMA2000 (IS-2000) standard which supports high data rates and can be deployed alongside a wireless carrier's voice services. It uses advanced multiplexing techniques including code-division multiple access (CDMA) as well as time-division multiplexing (TDM) to maximize throughput. It is a part of the CDMA2000 family of standards and has been adopted by many mobile phone service providers around the world particularly those previously employing CDMA networks. It is also used on the Globalstar satellite phone network.

In communications, Circuit Switched Data (CSD) is the original form of data transmission developed for the time-division multiple access (TDMA)-based mobile phone systems like Global System for Mobile Communications (GSM). After 2010 many telecommunication carriers dropped support for CSD, and CSD has been superseded by GPRS and EDGE (E-GPRS).

Adaptive Multi-Rate Wideband (AMR-WB) is a patented wideband speech audio coding standard developed based on Adaptive Multi-Rate encoding, using a similar methodology to algebraic code-excited linear prediction (ACELP). AMR-WB provides improved speech quality due to a wider speech bandwidth of 50–7000 Hz compared to narrowband speech coders which in general are optimized for POTS wireline quality of 300–3400 Hz. AMR-WB was developed by Nokia and VoiceAge and it was first specified by 3GPP.

<span class="mw-page-title-main">E-UTRA</span> 3GPP interface

E-UTRA is the air interface of 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) upgrade path for mobile networks. It is an acronym for Evolved UMTS Terrestrial Radio Access, also known as the Evolved Universal Terrestrial Radio Access in early drafts of the 3GPP LTE specification. E-UTRAN is the combination of E-UTRA, user equipment (UE), and a Node B.

<span class="mw-page-title-main">High Speed Packet Access</span> Communications protocols

High Speed Packet Access (HSPA) is an amalgamation of two mobile protocols—High Speed Downlink Packet Access (HSDPA) and High Speed Uplink Packet Access (HSUPA)—that extends and improves the performance of existing 3G mobile telecommunication networks using the WCDMA protocols. A further-improved 3GPP standard called Evolved High Speed Packet Access was released late in 2008, with subsequent worldwide adoption beginning in 2010. The newer standard allows bit rates to reach as high as 337 Mbit/s in the downlink and 34 Mbit/s in the uplink; however, these speeds are rarely achieved in practice.

A wide variety of different wireless data technologies exist, some in direct competition with one another, others designed for specific applications. Wireless technologies can be evaluated by a variety of different metrics of which some are described in this entry.

The Um interface is the air interface for the GSM mobile telephone standard. It is the interface between the mobile station (MS) and the Base transceiver station (BTS). It is called Um because it is the mobile analog to the U interface of ISDN. Um is defined in the GSM 04.xx and 05.xx series of specifications. Um can also support GPRS packet-oriented communication.

In mobile telephony a bearer service is a link between two points, which is defined by a certain set of characteristics. Whenever user equipment (UE) is being provided with any service, the service has to be associated with a Radio Bearer specifying the configuration for layer 2 and physical layer in order to have its QoS clearly defined. Radio bearers are channels offered by Layer 2 to higher layers for the transfer of either user or control data. In other words, Layer 2 offers to the upper layers the service of information transmission between the UE and the UTRAN by means of the Radio Bearers (RBs) and Signaling Radio Bearers (SRBs). Therefore, the service access points between Layer 2 and upper layers are RBs.

References

  1. http://www.itu.int/ITU-D/imt-2000/MiscDocuments/IMT-Deployments-Rev3.pdf . Retrieved April 16, 2008.{{cite web}}: Missing or empty |title= (help)[ dead link ]
  2. https://tacs.eu/Analyses/Wireless%20Networks/edge1.pdf [ bare URL PDF ]
  3. ETSI SMG2 99/872
  4. 1 2 "Archived copy" (PDF). Archived from the original (PDF) on 2009-03-06. Retrieved 2011-05-10.{{cite web}}: CS1 maint: archived copy as title (link)
  5. 1 2 3 4 5 6 7 8 9 10 11 3rd Generation Partnership Project (September 2012). "3GGP TS45.001: Technical Specification Group GSM/EDGE Radio Access Network; Physical layer on the radio path; General description" . Retrieved 2013-07-20.{{cite web}}: CS1 maint: numeric names: authors list (link)
  6. 3rd Generation Partnership Project (June 2015). "3GGP TS45.001: Technical Specification Group GSM/EDGE Radio Access Network; Mobile Station (MS) - Base Station System (BSS) interface; Radio Link Control / Medium Access Control (RLC/MAC) protocol; section 10.0a.1 - GPRS RLC/MAC block for data transfer". 12.5.0. Retrieved 2015-12-05.{{cite web}}: CS1 maint: numeric names: authors list (link)
  7. 3rd Generation Partnership Project (June 2015). "3GGP TS45.001: Technical Specification Group GSM/EDGE Radio Access Network; Mobile Station (MS) - Base Station System (BSS) interface; Radio Link Control / Medium Access Control (RLC/MAC) protocol; section 10.2.1 - Downlink RLC data block". 12.5.0. Retrieved 2015-12-05.{{cite web}}: CS1 maint: numeric names: authors list (link)
  8. "EDGE, HSPA and LTE: The Mobile Broadband Advantage" (PDF). Rysavy Research and 3G Americas. 2007-09-01. pp. 58–65. Archived from the original (PDF) on 2009-10-07. Retrieved 2010-09-27.
  9. 1 2 "Yahoo!". www.engadgetmobile.com. Archived from the original on 2018-11-17. Retrieved 2016-03-14.
  10. https://dms-media.ccplatform.net/content/download/18420/98248.{{cite web}}: Missing or empty |title= (help)
  11. "GSA – The Global mobile Suppliers Association EDGE Databank". Gsacom.com. Retrieved 2013-03-05.